Flexible TiO<sub>2</sub>/ZrO<sub>2</sub>/AuCNAs Surface-Enhanced Raman Scattering Substrates for the Detection of Asomate in Apple Peel

(1) Background: Asomate, as a dithiocarbamate compound, is moderately toxic to the human body; thus, it is necessary to develop a rapid and efficient method for detection. To meet this need, this study introduced a rapid, non-destructive, and efficient method for detecting asomate residues on the su...

Full description

Saved in:
Bibliographic Details
Main Authors: Lina Zhao, Zhengdong Sun, Ye Shen, Zhiyang Chen, Yang Zhang, Jiyong Shi, Haroon Elrasheid Tahir, Xuechao Xu, Meng Zhang, Xiaobo Zou, Kaiyi Zheng
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/12/2062
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(1) Background: Asomate, as a dithiocarbamate compound, is moderately toxic to the human body; thus, it is necessary to develop a rapid and efficient method for detection. To meet this need, this study introduced a rapid, non-destructive, and efficient method for detecting asomate residues on the surface of apples based on surface-enhanced Raman spectroscopy (SERS) combined with flexible substrates. (2) Methods: Concave Au nanorods (AuCNAs) were synthesized in advance. Then, the AuCNAs were loaded on an electrostatically spun film to generate a flexible TiO<sub>2</sub>/ZrO<sub>2</sub>/AuCNAs substrate for detection. (3) Results: The flexible substrate exhibited strong SERS activity, with an enhancement factor (EF) up to 9.40 × 10<sup>7</sup> for 4-MBA. Meanwhile, the finite-difference time-domain (FDTD) simulation showed that the localized surface plasmon resonance (LSPR) effects related to the enhancement of the SERS signal are mainly generated from the ‘hot spots’ in AuCNAs. The density functional theory (DFT) simulation detailedly revealed that the SERS peaks could be generated by the interaction among asomate molecules, disassociated Au atoms, and Au facets. Moreover, the asomate in apple peel was analyzed with the limit of detection (LOD) as low as below 10 nM, allowing for the rapid detection of asomate directly on apple peels. (4) Conclusions: The flexible TiO<sub>2</sub>/ZrO<sub>2</sub>/AuCNAs film can be used for the in situ detection of asomate in apple peel at low concentrations. Moreover, the simulation methods, including FDTD and DFT, explained the mechanism of SERS from the flexible substrates.
ISSN:2304-8158