YOLO-WAS: A Lightweight Apple Target Detection Method Based on Improved YOLO11

Target detection is the key technology of the apple-picking robot. To overcome the limitations of existing apple target detection methods, including low recognition accuracy of multi-species apples in complex orchard environments and a complex network architecture that occupies large memory, a light...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinwu Du, Xiaoxuan Zhang, Tingting Li, Xiangyu Chen, Xiufang Yu, Heng Wang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/14/1521
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Target detection is the key technology of the apple-picking robot. To overcome the limitations of existing apple target detection methods, including low recognition accuracy of multi-species apples in complex orchard environments and a complex network architecture that occupies large memory, a lightweight apple recognition model based on the improved YOLO11 model was proposed, named YOLO-WAS model. The model aims to achieve efficient and accurate automatic multi-species apple identification while reducing computational resource consumption and facilitating real-time applications on low-power devices. First, the study constructed a high-quality multi-species apple dataset and improved the complexity and diversity of the dataset through various data enhancement techniques. The YOLO-WAS model replaced the ordinary convolution module of YOLO11 with the Adown module proposed in YOLOv9, the backbone C3K2 module combined with Wavelet Transform Convolution (WTConv), and the spatial and channel synergistic attention module Self-Calibrated Spatial Attention (SCSA) combined with the C2PSA attention mechanism to form the C2PSA_SCSA module was also introduced. Through these improvements, the model not only ensured lightweight but also significantly improved performance. Experimental results show that the proposed YOLO-WAS model achieves a precision (P) of 0.958, a recall (R) of 0.921, and mean average precision at IoU threshold of 0.5 (mAP@50) of 0.970 and mean average precision from IoU threshold of 0.5 to 0.95 with step 0.05 (mAP@50:95) of 0.835. Compared to the baseline model, the YOLO-WAS exhibits reduced computational complexity, with the number of parameters and floating-point operations decreased by 22.8% and 20.6%, respectively. These results demonstrate that the model performs competitively in apple detection tasks and holds potential to meet real-time detection requirements in resource-constrained environments, thereby contributing to the advancement of automated orchard management.
ISSN:2077-0472