Microbial Food Safety and Antimicrobial Resistance in Foods: A Dual Threat to Public Health

The intersection of microbial food safety and antimicrobial resistance (AMR) represents a mounting global threat with profound implications for public health, food safety, and sustainable development. This review explores the complex pathways through which foodborne pathogens—such as <i>Salmon...

Full description

Saved in:
Bibliographic Details
Main Authors: Ayman Elbehiry, Eman Marzouk, Adil Abalkhail, Husam M. Edrees, Abousree T. Ellethy, Abdulaziz M. Almuzaini, Mai Ibrahem, Abdulrahman Almujaidel, Feras Alzaben, Abdullah Alqrni, Akram Abu-Okail
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/13/7/1592
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intersection of microbial food safety and antimicrobial resistance (AMR) represents a mounting global threat with profound implications for public health, food safety, and sustainable development. This review explores the complex pathways through which foodborne pathogens—such as <i>Salmonella</i> spp., <i>Escherichia coli</i> (<i>E. coli</i>), <i>Listeria monocytogenes</i> (<i>L. monocytogenes</i>), and <i>Campylobacter</i> spp.—acquire and disseminate resistance within human, animal, and environmental ecosystems. Emphasizing a One Health framework, we examine the drivers of AMR across sectors, including the misuse of antibiotics in agriculture, aquaculture, and clinical settings, and assess the role of environmental reservoirs in sustaining and amplifying resistance genes. We further discuss the evolution of surveillance systems, regulatory policies, and antimicrobial stewardship programs (ASPs) designed to mitigate resistance across the food chain. Innovations in next-generation sequencing, metagenomics, and targeted therapeutics such as bacteriophage therapy, antimicrobial peptides (AMPs), and CRISPR-based interventions offer promising alternatives to conventional antibiotics. However, the translation of these advances into practice remains uneven, particularly in low- and middle-income countries (LMICs) facing significant barriers to diagnostic access, laboratory capacity, and equitable treatment availability. Our analysis underscores the urgent need for integrated, cross-sectoral action—anchored in science, policy, and education—to curb the global spread of AMR. Strengthening surveillance, investing in research, promoting responsible antimicrobial use, and fostering global collaboration are essential to preserving the efficacy of existing treatments and ensuring the microbiological safety of food systems worldwide.
ISSN:2076-2607