Intraslab seismicity characteristics of northern ChileKey points
The Chilean subduction zone is one of the most seismically active regions globally, characterized by extensive intermediate-depth seismicity in the slab. In this study, we construct a new earthquake catalog for northern Chile using seismic waveforms assembled for the period of 2014−2019, from which...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co., Ltd.
2025-08-01
|
Series: | Earthquake Science |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1674451925000205 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Chilean subduction zone is one of the most seismically active regions globally, characterized by extensive intermediate-depth seismicity in the slab. In this study, we construct a new earthquake catalog for northern Chile using seismic waveforms assembled for the period of 2014−2019, from which 320,070 P-wave and 232,907 S-wave first arrivals are obtained for 25,763 earthquakes. Grid search location method NonLinLoc is applied to determine initial earthquake locations and double-difference location method is used to improve relative event locations. The distribution of earthquakes exhibits distinct patterns to the north and south of 21°S. There are many more earthquakes deeper than ∼150 km to the south of 21°S, while relatively fewer to the north. The intraslab earthquakes shallower than ∼80 km generally reveal a distinct double seismic zone, and the gap between the two seismic planes disappears at a depth of approximately ∼80 km, followed by a concentration of seismicity in the depth range of ∼80−150 km. In the deeper slab, there exist several seismicity clusters with distinct earthquake activities down to ∼300 km. These characteristics shown in slab seismicity are likely caused by different mechanisms and can be helpful for understanding the subduction process. |
---|---|
ISSN: | 1867-8777 |