Synergizing Multi-Temporal Remote Sensing and Systemic Resilience for Rainstorm–Flood Risk Zoning in the Northern Qinling Foothills: A Geospatial Modeling Approach

The northern foothills of the Qinling Mountains, a critical ecological barrier and urban–rural transition zone in China, face intensifying rainstorm–flood disasters under climate extremes and rapid urbanization. This study pioneers a remote sensing-driven, dynamically coupled framework by integratin...

Full description

Saved in:
Bibliographic Details
Main Authors: Dong Liu, Jiaqi Zhang, Xin Wang, Jianbing Peng, Rui Wang, Xiaoyan Huang, Denghui Li, Long Shao, Zixuan Hao
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/12/2009
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The northern foothills of the Qinling Mountains, a critical ecological barrier and urban–rural transition zone in China, face intensifying rainstorm–flood disasters under climate extremes and rapid urbanization. This study pioneers a remote sensing-driven, dynamically coupled framework by integrating multi-source satellite data, system resilience theory, and spatial modeling to develop a novel “risk identification–resilience assessment–scenario simulation” chain. This framework quantitatively evaluates the nonlinear response mechanisms of town–village systems to flood disasters, emphasizing the synergistic effects of spatial scale, morphology, and functional organization. The proposed framework uniquely integrates three innovative modules: (1) a hybrid risk identification engine combining normalized difference vegetation index (NDVI) temporal anomaly detection and spatiotemporal hotspot analysis; (2) a morpho-functional resilience quantification model featuring a newly developed spatial morphological resilience index (SMRI) that synergizes landscape compactness, land-use diversity, and ecological connectivity through the entropy-weighted analytic hierarchy process (AHP); and (3) a dynamic scenario simulator embedding rainfall projections into a coupled hydrodynamic model. Key advancements over existing methods include the multi-temporal SMRI and the introduction of a nonlinear threshold response function to quantify “safe-fail” adaptation capacities. Scenario simulations reveal a reduction in flood losses under ecological priority strategies, outperforming conventional engineering-based solutions by resilience gain. The proposed zoning strategy prioritizing ecological restoration, infrastructure hardening, and community-based resilience units provides a scalable framework for disaster-adaptive spatial planning, underpinned by remote sensing-driven dynamic risk mapping. This work advances the application of satellite-aided geospatial analytics in balancing ecological security and socioeconomic resilience across complex terrains.
ISSN:2072-4292