Fire Assessment of a Subway Train Fire: A Study Based on Full-Scale Experiments and Numerical Simulations
Assessments of subway train fires were conducted based on full-scale experiments and numerical simulations. The experimental platform and simulation model were established according to a real subway train in China. The results show that there was no obvious flame spread, and all the electrical circu...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Fire |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2571-6255/8/7/259 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Assessments of subway train fires were conducted based on full-scale experiments and numerical simulations. The experimental platform and simulation model were established according to a real subway train in China. The results show that there was no obvious flame spread, and all the electrical circuitry maintained its integrity during a standard luggage fire. The maximum HRR (heat release rate) of the luggage fire obtained through the full-scale experiment was 155.5 kW, which was almost the same as the standard HRR curve provided in EN 45545-1. However, the fire only lasted approximately 180 s, which was much shorter than a standard fire (600 s). Through numerical simulations of an entire subway train, the side wall and roof ignited quickly, and the fire continually spread to the adjacent compartment under the extreme scenario with a gasoline pool fire and exposed winterproof material. The maximum HRRs of the luggage and gasoline pool fires were 179.7 and 17,800.0 kW, respectively. According to the experimental and simulation results, the Duggan method, which assumes that all combustibles inside a train compartment burn at the same time, was not appropriate for assessing the fires in the subway train, and a simple revised frame was proposed instead. |
|---|---|
| ISSN: | 2571-6255 |