Estimates of Coefficients for Bi-Univalent Functions in the Subclass H_∑ (n,γ,φ)

Considering that finding the bounds for the coefficients of the Taylor-Maclaurin series expansion of bi-univalent functions is one of the important subjects in geometric function theory that has attracted the attention of many researchers in the last few decades, we also take a step in this directi...

Full description

Saved in:
Bibliographic Details
Main Authors: Khalid I. Abdullah, Nafya H. Mohammed
Format: Article
Language:English
Published: Tikrit University 2023-08-01
Series:Tikrit Journal of Pure Science
Subjects:
Online Access:https://tjpsj.org/index.php/tjps/article/view/1531
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considering that finding the bounds for the coefficients of the Taylor-Maclaurin series expansion of bi-univalent functions is one of the important subjects in geometric function theory that has attracted the attention of many researchers in the last few decades, we also take a step in this direction. Finding such bounds is the main focus or, more clearly, the main problem of our work. In this article, we study the subclass H_∑ (n,γ,φ) of bi-univalent functions which is defined in the open unit disk D. Furthermore, we obtained the upper bounds estimates for the first coefficients |a_2 | and |a_3 | of the functions in this category by using subordination method. From the main result of the article (Theorem 2.1), special cases have been derived that improve some the results of previous articles.
ISSN:1813-1662
2415-1726