Optimizing Remote Sensing Image Retrieval Through a Hybrid Methodology

The contemporary challenge in remote sensing lies in the precise retrieval of increasingly abundant and high-resolution remotely sensed images (RS image) stored in expansive data warehouses. The heightened spatial and spectral resolutions, coupled with accelerated image acquisition rates, necessitat...

Full description

Saved in:
Bibliographic Details
Main Authors: Sujata Alegavi, Raghvendra Sedamkar
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/11/6/179
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The contemporary challenge in remote sensing lies in the precise retrieval of increasingly abundant and high-resolution remotely sensed images (RS image) stored in expansive data warehouses. The heightened spatial and spectral resolutions, coupled with accelerated image acquisition rates, necessitate advanced tools for effective data management, retrieval, and exploitation. The classification of large-sized images at the pixel level generates substantial data, escalating the workload and search space for similarity measurement. Semantic-based image retrieval remains an open problem due to limitations in current artificial intelligence techniques. Furthermore, on-board storage constraints compel the application of numerous compression algorithms to reduce storage space, intensifying the difficulty of retrieving substantial, sensitive, and target-specific data. This research proposes an innovative hybrid approach to enhance the retrieval of remotely sensed images. The approach leverages multilevel classification and multiscale feature extraction strategies to enhance performance. The retrieval system comprises two primary phases: database building and retrieval. Initially, the proposed Multiscale Multiangle Mean-shift with Breaking Ties (MSMA-MSBT) algorithm selects informative unlabeled samples for hyperspectral and synthetic aperture radar images through an active learning strategy. Addressing the scaling and rotation variations in image capture, a flexible and dynamic algorithm, modified Deep Image Registration using Dynamic Inlier (IRDI), is introduced for image registration. Given the complexity of remote sensing images, feature extraction occurs at two levels. Low-level features are extracted using the modified Multiscale Multiangle Completed Local Binary Pattern (MSMA-CLBP) algorithm to capture local contexture features, while high-level features are obtained through a hybrid CNN structure combining pretrained networks (Alexnet, Caffenet, VGG-S, VGG-M, VGG-F, VGG-VDD-16, VGG-VDD-19) and a fully connected dense network. Fusion of low- and high-level features facilitates final class distinction, with soft thresholding mitigating misclassification issues. A region-based similarity measurement enhances matching percentages. Results, evaluated on high-resolution remote sensing datasets, demonstrate the effectiveness of the proposed method, outperforming traditional algorithms with an average accuracy of 86.66%. The hybrid retrieval system exhibits substantial improvements in classification accuracy, similarity measurement, and computational efficiency compared to state-of-the-art scene classification and retrieval methods.
ISSN:2313-433X