Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels

Evolution equations with fractional-time derivatives and singular memory kernels are used for modeling phenomena exhibiting hereditary properties, as they effectively incorporate memory effects into their formulation. Time-fractional partial integro-differential equations (FPIDEs) represent a signif...

Full description

Saved in:
Bibliographic Details
Main Authors: Kamel Al-Khaled, Isam Al-Darabsah, Amer Darweesh, Amro Alshare
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/6/392
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839653955428155392
author Kamel Al-Khaled
Isam Al-Darabsah
Amer Darweesh
Amro Alshare
author_facet Kamel Al-Khaled
Isam Al-Darabsah
Amer Darweesh
Amro Alshare
author_sort Kamel Al-Khaled
collection DOAJ
description Evolution equations with fractional-time derivatives and singular memory kernels are used for modeling phenomena exhibiting hereditary properties, as they effectively incorporate memory effects into their formulation. Time-fractional partial integro-differential equations (FPIDEs) represent a significant class of such evolution equations and are widely used in diverse scientific and engineering fields. In this study, we use the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>sinc</mi></semantics></math></inline-formula>-collocation and iterative Laplace transform methods to solve a specific FPIDE with a weakly singular kernel. Specifically, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>sinc</mi></semantics></math></inline-formula>-collocation method is applied to discretize the spatial domain, while a combination of numerical techniques is utilized for temporal discretization. Then, we prove the convergence analytically. To compare the two methods, we provide two examples. We notice that both the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>sinc</mi></semantics></math></inline-formula>-collocation and iterative Laplace transform methods provide good approximations. Moreover, we find that the accuracy of the methods is influenced by fractional order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and the memory-kernel parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. We observe that the error decreases as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> increases, where the kernel becomes milder, which extends the single-value study of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> in the literature.
format Article
id doaj-art-7d36b68c20d44bfba4ce4f1a46d41a7f
institution Matheson Library
issn 2504-3110
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-7d36b68c20d44bfba4ce4f1a46d41a7f2025-06-25T13:52:14ZengMDPI AGFractal and Fractional2504-31102025-06-019639210.3390/fractalfract9060392Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory KernelsKamel Al-Khaled0Isam Al-Darabsah1Amer Darweesh2Amro Alshare3Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, JordanDepartment of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, JordanDepartment of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, JordanDepartment of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, JordanEvolution equations with fractional-time derivatives and singular memory kernels are used for modeling phenomena exhibiting hereditary properties, as they effectively incorporate memory effects into their formulation. Time-fractional partial integro-differential equations (FPIDEs) represent a significant class of such evolution equations and are widely used in diverse scientific and engineering fields. In this study, we use the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>sinc</mi></semantics></math></inline-formula>-collocation and iterative Laplace transform methods to solve a specific FPIDE with a weakly singular kernel. Specifically, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>sinc</mi></semantics></math></inline-formula>-collocation method is applied to discretize the spatial domain, while a combination of numerical techniques is utilized for temporal discretization. Then, we prove the convergence analytically. To compare the two methods, we provide two examples. We notice that both the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>sinc</mi></semantics></math></inline-formula>-collocation and iterative Laplace transform methods provide good approximations. Moreover, we find that the accuracy of the methods is influenced by fractional order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and the memory-kernel parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. We observe that the error decreases as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> increases, where the kernel becomes milder, which extends the single-value study of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> in the literature.https://www.mdpi.com/2504-3110/9/6/392fractional partial integro-differential equationsinc-collocation methoditerative Laplace transform methodweakly singular kernel
spellingShingle Kamel Al-Khaled
Isam Al-Darabsah
Amer Darweesh
Amro Alshare
Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels
Fractal and Fractional
fractional partial integro-differential equation
sinc-collocation method
iterative Laplace transform method
weakly singular kernel
title Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels
title_full Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels
title_fullStr Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels
title_full_unstemmed Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels
title_short Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels
title_sort analytical and numerical treatment of evolutionary time fractional partial integro differential equations with singular memory kernels
topic fractional partial integro-differential equation
sinc-collocation method
iterative Laplace transform method
weakly singular kernel
url https://www.mdpi.com/2504-3110/9/6/392
work_keys_str_mv AT kamelalkhaled analyticalandnumericaltreatmentofevolutionarytimefractionalpartialintegrodifferentialequationswithsingularmemorykernels
AT isamaldarabsah analyticalandnumericaltreatmentofevolutionarytimefractionalpartialintegrodifferentialequationswithsingularmemorykernels
AT amerdarweesh analyticalandnumericaltreatmentofevolutionarytimefractionalpartialintegrodifferentialequationswithsingularmemorykernels
AT amroalshare analyticalandnumericaltreatmentofevolutionarytimefractionalpartialintegrodifferentialequationswithsingularmemorykernels