An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecasting

Large-Scale Travelling Ionospheric Disturbances (LSTIDs) are wave-like ionospheric fluctuations, generally triggered by geomagnetic storms, which play a critical role in space weather dynamics. In this work, we present a machine learning model able to forecast the occurrence of LSTIDs over the Europ...

Full description

Saved in:
Bibliographic Details
Main Authors: Ventriglia Vincenzo, Guerra Marco, Cesaroni Claudio, Spogli Luca, Altadill David, Segarra Antoni, Galkin Ivan, Barta Veronika, Verhulst Tobias G.W., de Paula Víctor, Navas-Portella Víctor, Berényi Kitti A., Belehaki Anna
Format: Article
Language:English
Published: EDP Sciences 2025-01-01
Series:Journal of Space Weather and Space Climate
Subjects:
Online Access:https://www.swsc-journal.org/articles/swsc/full_html/2025/01/swsc240048/swsc240048.html
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839639363727654912
author Ventriglia Vincenzo
Guerra Marco
Cesaroni Claudio
Spogli Luca
Altadill David
Segarra Antoni
Galkin Ivan
Barta Veronika
Verhulst Tobias G.W.
de Paula Víctor
Navas-Portella Víctor
Berényi Kitti A.
Belehaki Anna
author_facet Ventriglia Vincenzo
Guerra Marco
Cesaroni Claudio
Spogli Luca
Altadill David
Segarra Antoni
Galkin Ivan
Barta Veronika
Verhulst Tobias G.W.
de Paula Víctor
Navas-Portella Víctor
Berényi Kitti A.
Belehaki Anna
author_sort Ventriglia Vincenzo
collection DOAJ
description Large-Scale Travelling Ionospheric Disturbances (LSTIDs) are wave-like ionospheric fluctuations, generally triggered by geomagnetic storms, which play a critical role in space weather dynamics. In this work, we present a machine learning model able to forecast the occurrence of LSTIDs over the European continent up to three hours in advance. The model is based on CatBoost, a gradient boosting framework. It is trained on a human-validated LSTID catalogue with the various physical drivers, including ionogram information, geomagnetic, and solar activity indices. There are three forecasting modes depending on the demanded scenarios with varying relative costs of false positives and false negatives. It is crucial to make the model predictions explainable, so that the output contribution of each physical factor input is visualised through the game-theoretic SHapley Additive exPlanation (SHAP) formalism. The validation procedure consists of a global-level evaluation and interpretation step, firstly, followed by an event-level validation against independent detection methods, which highlights the model’s predictive robustness and suggests its potential for real-time space weather forecasting. Depending on the operating mode, we report an improvement ranging from +72% to +93% over the performance of a rule-based benchmark. Our study concludes with a comprehensive analysis of future research directions and actions to be taken towards full operability. We discuss probabilistic forecasting approaches from a cost-sensitive learning perspective, along with performance-centric model monitoring. Finally, through the lens of the conformal prediction framework, we further comment on the uncertainty quantification for end-user risk management and mitigation.
format Article
id doaj-art-794c47eed26c4613966d12b51b795b4d
institution Matheson Library
issn 2115-7251
language English
publishDate 2025-01-01
publisher EDP Sciences
record_format Article
series Journal of Space Weather and Space Climate
spelling doaj-art-794c47eed26c4613966d12b51b795b4d2025-07-04T09:36:18ZengEDP SciencesJournal of Space Weather and Space Climate2115-72512025-01-01152510.1051/swsc/2025020swsc240048An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecastingVentriglia Vincenzo0https://orcid.org/0009-0008-6017-2118Guerra Marco1https://orcid.org/0000-0001-9993-2366Cesaroni Claudio2https://orcid.org/0000-0003-2268-4389Spogli Luca3https://orcid.org/0000-0003-2310-0306Altadill David4https://orcid.org/0000-0001-7730-385XSegarra Antoni5Galkin Ivan6Barta Veronika7https://orcid.org/0000-0001-9135-5533Verhulst Tobias G.W.8de Paula Víctor9https://orcid.org/0000-0002-5810-9901Navas-Portella Víctor10https://orcid.org/0000-0002-1077-0952Berényi Kitti A.11https://orcid.org/0000-0002-8799-5850Belehaki Anna12https://orcid.org/0000-0002-9270-5387Istituto Nazionale di Geofisica e VulcanologiaIstituto Nazionale di Geofisica e VulcanologiaIstituto Nazionale di Geofisica e VulcanologiaIstituto Nazionale di Geofisica e VulcanologiaObservatori de l’Ebre, University Ramon Llull – CSICObservatori de l’Ebre, University Ramon Llull – CSICUniversity of Massachusetts LowellHUN-REN Institute of Earth Physics and Space ScienceRoyal Meteorological Institute of Belgium, Solar Terrestrial Centre of ExcellenceObservatori de l’Ebre, University Ramon Llull – CSICObservatori de l’Ebre, University Ramon Llull – CSICHUN-REN Institute of Earth Physics and Space ScienceNational Observatory of Athens, IAASARSLarge-Scale Travelling Ionospheric Disturbances (LSTIDs) are wave-like ionospheric fluctuations, generally triggered by geomagnetic storms, which play a critical role in space weather dynamics. In this work, we present a machine learning model able to forecast the occurrence of LSTIDs over the European continent up to three hours in advance. The model is based on CatBoost, a gradient boosting framework. It is trained on a human-validated LSTID catalogue with the various physical drivers, including ionogram information, geomagnetic, and solar activity indices. There are three forecasting modes depending on the demanded scenarios with varying relative costs of false positives and false negatives. It is crucial to make the model predictions explainable, so that the output contribution of each physical factor input is visualised through the game-theoretic SHapley Additive exPlanation (SHAP) formalism. The validation procedure consists of a global-level evaluation and interpretation step, firstly, followed by an event-level validation against independent detection methods, which highlights the model’s predictive robustness and suggests its potential for real-time space weather forecasting. Depending on the operating mode, we report an improvement ranging from +72% to +93% over the performance of a rule-based benchmark. Our study concludes with a comprehensive analysis of future research directions and actions to be taken towards full operability. We discuss probabilistic forecasting approaches from a cost-sensitive learning perspective, along with performance-centric model monitoring. Finally, through the lens of the conformal prediction framework, we further comment on the uncertainty quantification for end-user risk management and mitigation.https://www.swsc-journal.org/articles/swsc/full_html/2025/01/swsc240048/swsc240048.htmllarge scale travelling ionospheric disturbancesionosphereforecastingexplainable artificial intelligencemachine learning
spellingShingle Ventriglia Vincenzo
Guerra Marco
Cesaroni Claudio
Spogli Luca
Altadill David
Segarra Antoni
Galkin Ivan
Barta Veronika
Verhulst Tobias G.W.
de Paula Víctor
Navas-Portella Víctor
Berényi Kitti A.
Belehaki Anna
An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecasting
Journal of Space Weather and Space Climate
large scale travelling ionospheric disturbances
ionosphere
forecasting
explainable artificial intelligence
machine learning
title An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecasting
title_full An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecasting
title_fullStr An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecasting
title_full_unstemmed An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecasting
title_short An explainable Machine Learning model for Large-Scale Travelling Ionospheric Disturbances forecasting
title_sort explainable machine learning model for large scale travelling ionospheric disturbances forecasting
topic large scale travelling ionospheric disturbances
ionosphere
forecasting
explainable artificial intelligence
machine learning
url https://www.swsc-journal.org/articles/swsc/full_html/2025/01/swsc240048/swsc240048.html
work_keys_str_mv AT ventrigliavincenzo anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT guerramarco anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT cesaroniclaudio anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT spogliluca anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT altadilldavid anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT segarraantoni anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT galkinivan anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT bartaveronika anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT verhulsttobiasgw anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT depaulavictor anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT navasportellavictor anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT berenyikittia anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT belehakianna anexplainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT ventrigliavincenzo explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT guerramarco explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT cesaroniclaudio explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT spogliluca explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT altadilldavid explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT segarraantoni explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT galkinivan explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT bartaveronika explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT verhulsttobiasgw explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT depaulavictor explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT navasportellavictor explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT berenyikittia explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting
AT belehakianna explainablemachinelearningmodelforlargescaletravellingionosphericdisturbancesforecasting