Structure-Aware and Format-Enhanced Transformer for Accident Report Modeling
Modeling accident investigation reports is crucial for elucidating accident causation mechanisms, analyzing risk evolution processes, and formulating effective accident prevention strategies. However, such reports are typically long, hierarchically structured, and information-dense, posing unique ch...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/14/7928 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modeling accident investigation reports is crucial for elucidating accident causation mechanisms, analyzing risk evolution processes, and formulating effective accident prevention strategies. However, such reports are typically long, hierarchically structured, and information-dense, posing unique challenges for existing language models. To address these domain-specific characteristics, this study proposes SAFE-Transformer, a Structure-Aware and Format-Enhanced Transformer designed for long-document modeling in the emergency safety context. SAFE-Transformer adopts a dual-stream encoding architecture to separately model symbolic section features and heading text, integrates hierarchical depth and format types into positional encodings, and introduces a dynamic gating unit to adaptively fuse headings with paragraph semantics. We evaluate the model on a multi-label accident intelligence classification task using a real-world corpus of 1632 official reports from high-risk industries. Results demonstrate that SAFE-Transformer effectively captures hierarchical semantic structure and outperforms strong long-text baselines. Further analysis reveals an inverted U-shaped performance trend across varying report lengths and highlights the role of attention sparsity and label distribution in long-text modeling. This work offers a practical solution for structurally complex safety documents and provides methodological insights for downstream applications in safety supervision and risk analysis. |
---|---|
ISSN: | 2076-3417 |