Nanofibrous Membranes Based on Collagen and Conductive Polymers with Perspective for Biological Applications
In this study, membranes of collagen–chitosan (C-Ch) in combination with conductive polymers (CPs) such as polyaniline (Pani) and polypyrrole (Ppy) were obtained by electrospinning using non-toxic solvents such as PBS and ethanol. The change in the morphology after swelling was observed by SEM, whil...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Membranes |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-0375/15/6/177 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, membranes of collagen–chitosan (C-Ch) in combination with conductive polymers (CPs) such as polyaniline (Pani) and polypyrrole (Ppy) were obtained by electrospinning using non-toxic solvents such as PBS and ethanol. The change in the morphology after swelling was observed by SEM, while an FTIR analysis showed specific interactions between C-Ch and CP. Mechanical tests showed that C-Ch/Ppy exhibited more elastic behavior and a better stress distribution compared to C-Ch/Pani. The diffusion of Na<sup>+</sup> and Ca<sup>2+</sup> ions through the membranes was evaluated and showed a greater resistance for Ca<sup>2+</sup> in both membrane types. Preliminary biocompatibility testing with H9C2 cells showed a successful cell adhesion to the membranes. These results emphasize the potential of C-Ch/Pani composites for electrically active scaffolds and of C-Ch/PPy composites for applications in mechanically dynamic tissue-specific regeneration. |
---|---|
ISSN: | 2077-0375 |