Joint Entity–Relation Extraction for Knowledge Graph Construction in Marine Ranching Equipment

The construction of marine ranching is a crucial component of China’s Blue Granary strategy, yet the fragmented knowledge system in marine ranching equipment impedes intelligent management and operational efficiency. This study proposes the first knowledge graph (KG) framework tailored for marine ra...

Full description

Saved in:
Bibliographic Details
Main Authors: Du Chen, Zhiwu Gao, Sirui Li, Xuruixue Guo, Yaqi Wu, Haiyu Zhang, Delin Zhang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7611
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The construction of marine ranching is a crucial component of China’s Blue Granary strategy, yet the fragmented knowledge system in marine ranching equipment impedes intelligent management and operational efficiency. This study proposes the first knowledge graph (KG) framework tailored for marine ranching equipment, integrating hybrid ontology design, joint entity–relation extraction, and graph-based knowledge storage: (1) The limitations in existing KG are obtained through targeted questionnaires for diverse users and employees; (2) A domain ontology was constructed through a combination of the top-down and the bottom-up approach, defining seven key concepts and eight semantic relationships; (3) Semi-structured data from enterprises and standards, combined with unstructured data from the literature were systematically collected, cleaned via Scrapy and regular expression, and standardized into JSON format, forming a domain-specific corpus of 1456 annotated sentences; (4) A novel BERT-BiGRU-CRF model was developed, leveraging contextual embeddings from BERT, parameter-efficient sequence modeling via BiGRU (Bidirectional Gated Recurrent Unit), and label dependency optimization using CRF (Conditional Random Field). The TE + SE + R<sub>i</sub> + BMESO tagging strategy was introduced to address multi-relation extraction challenges by linking theme entities to secondary entities; (5) The Neo4j-based KG encapsulated 2153 nodes and 3872 edges, enabling scalable visualization and dynamic updates. Experimental results demonstrated superior performance over BiLSTM-CRF and BERT-BiLSTM-CRF, achieving 86.58% precision, 77.82% recall, and 81.97% F1 score. This study not only proposes the first structured KG framework for marine ranching equipment but also offers a transferable methodology for vertical domain knowledge extraction.
ISSN:2076-3417