Strategy Analysis of Seamlessly Resolving Turbulent Flow Simulations

Modeling of wall-bounded turbulent flows, in particular the hybridization of the Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods, has faced serious questions for decades. Specifically, there is continuous research of how usually applied methods such as detached eddy si...

Full description

Saved in:
Bibliographic Details
Main Author: Stefan Heinz
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/12/7/597
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modeling of wall-bounded turbulent flows, in particular the hybridization of the Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods, has faced serious questions for decades. Specifically, there is continuous research of how usually applied methods such as detached eddy simulation (DES) and wall-modeled LES (WMLES) can be made more successful in regard to complex, high-Reynolds-number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula>) flow simulations. The simple question is how it is possible to enable reliable and cost-efficient predictions of high-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula> wall-bounded turbulent flows in particular under conditions where data for validation are unavailable. This paper presents a strict analysis of strategies for the design of seamlessly resolving turbulent flow simulations for a wide class of turbulence models. The essential conclusions obtained are the following ones: First, by construction, usually applied methods like DES are incapable of systematically spanning the range from modeled to resolved flow simulations, which implies significant disadvantages. Second, a strict solution for this problem is given by novel continuous eddy simulation (CES) methods, which perform very well. Third, the design of a computational simplification of CES that still outperforms DES appears to be very promising.
ISSN:2226-4310