Symmetry-Based Data Augmentation Method for Deep Learning-Based Structural Damage Identification
The big data collected from structural health monitoring systems (SHMs), combined with the rapid advances in machine learning (ML), have enabled data-driven methods in practical SHM applications. These methods typically use ML algorithms to identify patterns within features extracted from data repre...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Infrastructures |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2412-3811/10/6/145 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The big data collected from structural health monitoring systems (SHMs), combined with the rapid advances in machine learning (ML), have enabled data-driven methods in practical SHM applications. These methods typically use ML algorithms to identify patterns within features extracted from data representing structural conditions, thereby inferring damage from changes in these patterns. However, data-driven models often struggle to generalize effectively to unseen datasets. This study addresses this challenge through three key contributions: dataset augmentation, an efficient feature representation, and a probabilistic modeling approach. First, a data augmentation method leveraging the symmetric properties of bridge structures is introduced to enhance dataset diversity. Second, a novel damage indicator named Fre-GraRMSC1 is proposed, capable of distinguishing both damage locations and severity. Finally, a probabilistic generative model based on a deep belief network (DBN) is developed to predict damage locations and degrees. The proposed methods are validated using vibration data from a numerical three-span continuous bridge subjected to random vehicle excitations. Results demonstrate high accuracy in damage identification and improved generalization performance. |
|---|---|
| ISSN: | 2412-3811 |