On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>
In the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2010-09-01
|
Series: | Моделирование и анализ информационных систем |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/1041 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1839573263166996480 |
---|---|
author | A. S. Snyatkov |
author_facet | A. S. Snyatkov |
author_sort | A. S. Snyatkov |
collection | DOAJ |
description | In the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also shown, that these theories are dexidable when the condition of eSexctive periodicity is satis&exd for hyperfuncctions. |
format | Article |
id | doaj-art-73b71497c11b4c6bae8cc326dc6ecd6d |
institution | Matheson Library |
issn | 1818-1015 2313-5417 |
language | English |
publishDate | 2010-09-01 |
publisher | Yaroslavl State University |
record_format | Article |
series | Моделирование и анализ информационных систем |
spelling | doaj-art-73b71497c11b4c6bae8cc326dc6ecd6d2025-08-04T14:06:39ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172010-09-011737290782On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>A. S. Snyatkov0Тверской государственный университетIn the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also shown, that these theories are dexidable when the condition of eSexctive periodicity is satis&exd for hyperfuncctions.https://www.mais-journal.ru/jour/article/view/1041semenov arithmetic<i>hyperfunction</i><i>ackermann function</i> |
spellingShingle | A. S. Snyatkov On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> Моделирование и анализ информационных систем semenov arithmetic <i>hyperfunction</i> <i>ackermann function</i> |
title | On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_full | On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_fullStr | On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_full_unstemmed | On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_short | On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i> |
title_sort | on decidability of the theory i th u 0 1 f i sub i i sub sub i 0 i sub i i i f i sub i i sub sub i n i sub i i i i |
topic | semenov arithmetic <i>hyperfunction</i> <i>ackermann function</i> |
url | https://www.mais-journal.ru/jour/article/view/1041 |
work_keys_str_mv | AT assnyatkov ondecidabilityofthetheoryithu01fisubiisubsubi0isubiiifisubiisubsubinisubiiii |