On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>

In the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also...

Full description

Saved in:
Bibliographic Details
Main Author: A. S. Snyatkov
Format: Article
Language:English
Published: Yaroslavl State University 2010-09-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/1041
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839573263166996480
author A. S. Snyatkov
author_facet A. S. Snyatkov
author_sort A. S. Snyatkov
collection DOAJ
description In the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also shown, that these theories are dexidable when the condition of eSexctive periodicity is satis&exd for hyperfuncctions.
format Article
id doaj-art-73b71497c11b4c6bae8cc326dc6ecd6d
institution Matheson Library
issn 1818-1015
2313-5417
language English
publishDate 2010-09-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj-art-73b71497c11b4c6bae8cc326dc6ecd6d2025-08-04T14:06:39ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172010-09-011737290782On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>A. S. Snyatkov0Тверской государственный университетIn the paper we consider theories which are obtained from the Semenov arithmetics introducing functions fi,i > 0. They are called "hyperfuncctions" and they are obtained when we iterate an addition-connexctexd function. We have provexl, that such theories are model complete. It is also shown, that these theories are dexidable when the condition of eSexctive periodicity is satis&exd for hyperfuncctions.https://www.mais-journal.ru/jour/article/view/1041semenov arithmetic<i>hyperfunction</i><i>ackermann function</i>
spellingShingle A. S. Snyatkov
On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>
Моделирование и анализ информационных систем
semenov arithmetic
<i>hyperfunction</i>
<i>ackermann function</i>
title On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>
title_full On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>
title_fullStr On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>
title_full_unstemmed On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>
title_short On Decidability of the Theory <i>Th(u, 0,1,<, +, f</i><sub><i></i></sub><sub><i>0</i></sub><i></i><i>,..., f</i><sub><i></i></sub><sub><i>n</i></sub><i></i><i>)</i>
title_sort on decidability of the theory i th u 0 1 f i sub i i sub sub i 0 i sub i i i f i sub i i sub sub i n i sub i i i i
topic semenov arithmetic
<i>hyperfunction</i>
<i>ackermann function</i>
url https://www.mais-journal.ru/jour/article/view/1041
work_keys_str_mv AT assnyatkov ondecidabilityofthetheoryithu01fisubiisubsubi0isubiiifisubiisubsubinisubiiii