Research on the Impact of Shot Selection on Neuromuscular Control Strategies During Basketball Shooting

Objective: This study aims to investigate the effect of shot selection on the muscle coordination characteristics during basketball shooting. Methods: A three-dimensional motion capture system, force platform, and wireless surface electromyography (sEMG) were used to simultaneously collect shooting...

Full description

Saved in:
Bibliographic Details
Main Authors: Qizhao Zhou, Shiguang Wu, Jiashun Zhang, Zhengye Pan, Ziye Kang, Yunchao Ma
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/4104
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: This study aims to investigate the effect of shot selection on the muscle coordination characteristics during basketball shooting. Methods: A three-dimensional motion capture system, force platform, and wireless surface electromyography (sEMG) were used to simultaneously collect shooting data from 14 elite basketball players. An inverse mapping model of sEMG signals and spinal α-motor neuron pool activity was developed based on the Debra muscle segment distribution theory. Non-negative matrix factorization (NMF) and K-means clustering were used to extract muscle coordination features. Results: (1) Significant differences in spinal segment activation timing and amplitude were observed between stationary and jump shots at different distances. In close-range stationary shots, the C5-S3 segments showed higher activation during the TP phase and lower activation during the RP phase. For mid-range shots, the C6-S3 segments exhibited greater activation during the TP phase. In long-range shots, the C7-S3 segments showed higher activation during the TP phase, whereas the L3-S3 segments showed lower activation during the RP phase (<i>p</i> < 0.01). (2) The spatiotemporal structure of muscle coordination modules differed significantly between stationary and jump shots. In terms of spatiotemporal structure, the second and third coordination groups showed stronger activation during the RP phase (<i>p</i> < 0.01). Significant differences in muscle activation levels were also observed between the coordination modules within each group in the spatial structure. Conclusion: Shot selection plays a significant role in shaping neuromuscular control strategies during basketball shooting. Targeted training should focus on addressing the athlete’s specific shooting weaknesses. For stationary shots, the emphasis should be on enhancing lower limb stability, while for jump shots, attention should be directed toward improving core stability and upper limb coordination.
ISSN:1424-8220