The minimal growth of entire functions with given zeros along unbounded sets

Let $l$ be a continuous function on $\mathbb{R}$ increasing to $+\infty$, and $\varphi$ be a positive function on $\mathbb{R}$. We proved that the condition $$ \varliminf_{x\to+\infty}\frac{\varphi(\ln[x])}{\ln x}>0 $$ is necessary and sufficient in order that for any complex sequence $(\zeta_n)$...

Full description

Saved in:
Bibliographic Details
Main Authors: I. V. Andrusyak, P.V. Filevych
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2020-12-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/160
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $l$ be a continuous function on $\mathbb{R}$ increasing to $+\infty$, and $\varphi$ be a positive function on $\mathbb{R}$. We proved that the condition $$ \varliminf_{x\to+\infty}\frac{\varphi(\ln[x])}{\ln x}>0 $$ is necessary and sufficient in order that for any complex sequence $(\zeta_n)$ with $n(r)\ge l(r)$, $r\ge r_0$, and every set $E\subset\mathbb{R}$ which is unbounded from above there exists an entire function $f$ having zeros only at the points $\zeta_n$ such that $$ \varliminf_{r\in E,\ r\to+\infty}\frac{\ln\ln M_f(r)}{\varphi(\ln n_\zeta(r))\ln l^{-1}(n_\zeta(r))}=0. $$ Here $n(r)$ is the counting function of $(\zeta_n)$, and $M_f(r)$ is the maximum modulus of $f$.
ISSN:1027-4634
2411-0620