Decolorization with Warmth–Coolness Adjustment in an Opponent and Complementary Color System

Creating grayscale images from a color reality has been an inherent human practice since ancient times, but it became a technological challenge with the advent of the first black-and-white televisions and digital image processing. Decolorization is a process that projects visual information from a t...

Full description

Saved in:
Bibliographic Details
Main Authors: Oscar Sanchez-Cesteros, Mariano Rincon
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/11/6/199
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Creating grayscale images from a color reality has been an inherent human practice since ancient times, but it became a technological challenge with the advent of the first black-and-white televisions and digital image processing. Decolorization is a process that projects visual information from a three-dimensional feature space to a one-dimensional space, thus reducing the dimensionality of the image while minimizing the loss of information. To achieve this, various strategies have been developed, including the application of color channel weights and the analysis of local and global image contrast, but there is no universal solution. In this paper, we propose a bio-inspired approach that combines findings from neuroscience on the architecture of the visual system and color coding with evidence from studies in the psychology of art. The goal is to simplify the decolorization process and facilitate its control through color-related concepts that are easily understandable to humans. This new method organizes colors in a scale that links activity on the retina with a system of opponent and complementary channels, thus allowing the adjustment of the perception of warmth and coolness in the image. The results show an improvement in chromatic contrast, especially in the warmth and coolness categories, as well as an enhanced ability to preserve subtle contrasts, outperforming other approaches in the Ishihara test used in color blindness detection. In addition, the method offers a computational advantage by reducing the process through direct pixel-level operation.
ISSN:2313-433X