GPR-Based Leakage Reconstruction of Shallow-Buried Water Supply Pipelines Using an Improved UNet++ Network
Ground-penetrating radar (GPR) plays a critical role in detecting underground targets, particularly locating and characterizing leaks in buried pipelines. However, the complex nature of GPR images related to pipeline leaks, combined with the limitations of existing neural network-based inversion met...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/13/2174 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ground-penetrating radar (GPR) plays a critical role in detecting underground targets, particularly locating and characterizing leaks in buried pipelines. However, the complex nature of GPR images related to pipeline leaks, combined with the limitations of existing neural network-based inversion methods, such as insufficient feature extraction and low inversion accuracy, poses significant challenges for effective leakage reconstruction. To address these challenges, this paper proposes an enhanced UNet++-based model: the Multi-Scale Directional Network PlusPlus (MSDNet++). The network employs an encoder–decoder architecture, in which the encoder incorporates multi-scale directional convolutions with coordinate attention to extract and compress features across different scales effectively. The decoder fuses multi-level features through dense skip connections and further enhances the representation of critical information via coordinate attention, enabling the accurate inversion of dielectric constant images. Experimental results on both simulated and real-world data demonstrate that MSDNet++ can accurately invert the location and extent of buried pipeline leaks from GPR B-scan images. |
---|---|
ISSN: | 2072-4292 |