A Systematic Approach to Studying Quark Energy Loss in Nuclei Using Positive Pions

Our objective is to test the published models of partonic energy loss, particularly those describing the energy loss mechanisms of quarks traversing nuclear matter, within the framework of semi-inclusive deep inelastic scattering. Our methodological approach focuses on quantifying the quark energy l...

Full description

Saved in:
Bibliographic Details
Main Authors: Nicolás Zambra-Gómez, William K. Brooks, Nicolás Viaux
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Particles
Subjects:
Online Access:https://www.mdpi.com/2571-712X/8/2/44
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our objective is to test the published models of partonic energy loss, particularly those describing the energy loss mechanisms of quarks traversing nuclear matter, within the framework of semi-inclusive deep inelastic scattering. Our methodological approach focuses on quantifying the quark energy loss in cold matter by analyzing the positive pions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>π</mi><mo>+</mo></msup></semantics></math></inline-formula>) produced in various nuclear targets, including deuterium, carbon, iron and lead, while our first approach only includes deuterium and carbon. Before normalizing the pions’ energy distribution to unity to perform a shape analysis, acceptance corrections were performed to account for the detector’s efficiency and ensure accurate comparisons of the spectra. By normalizing the energy spectra of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>π</mi><mo>+</mo></msup></semantics></math></inline-formula> produced from these distinct targets and based on the Baier–Dokshitzer–Mueller–Peigné–Schiff theory, which posits that quark energy loss depends only on nuclear size, it is assumed that the energy distributions of the targets will exhibit similar behavior. For this normalization, an energy shift between these distributions, corresponding to the quark energy loss, is identified. To ensure accuracy, statistical techniques such as the Kolmogorov–Smirnov test are used. The data used to test and explore the analysis technique and method were from the CLAS6 EG2 dataset collected using Jefferson Lab’s CLAS detector.
ISSN:2571-712X