Hybrid Deep–Geometric Approach for Efficient Consistency Assessment of Stereo Images

We present HGC-Net, a hybrid pipeline for assessing geometric consistency between stereo image pairs. Our method integrates classical epipolar geometry with deep learning components to compute an interpretable scalar score A, reflecting the degree of alignment. Unlike traditional techniques, which m...

Full description

Saved in:
Bibliographic Details
Main Authors: Michał Kowalczyk, Piotr Napieralski, Dominik Szajerman
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/14/4507
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present HGC-Net, a hybrid pipeline for assessing geometric consistency between stereo image pairs. Our method integrates classical epipolar geometry with deep learning components to compute an interpretable scalar score A, reflecting the degree of alignment. Unlike traditional techniques, which may overlook subtle miscalibrations, HGC-Net reliably detects both severe and mild geometric distortions, such as sub-degree tilts and pixel-level shifts. We evaluate the method on the Middlebury 2014 stereo dataset, using synthetically distorted variants to simulate misalignments. Experimental results show that our score degrades smoothly with increasing geometric error and achieves high detection rates even at minimal distortion levels, outperforming baseline approaches based on disparity or calibration checks. The method operates in real time (12.5 fps on 1080p input) and does not require access to internal camera parameters, making it suitable for embedded stereo systems and quality monitoring in robotic and AR/VR applications. The approach also supports explainability via confidence maps and anomaly heatmaps, aiding human operators in identifying problematic regions.
ISSN:1424-8220