3D Printed Posterior Connector Dimensions’ Effect on Fracture Properties of Provisional Two-Unit Fixed Dental Prostheses

This in vitro study aims to investigate the fracture properties of 3D-printed resin provisional material designed with different connector dimensions for two-unit fixed dental prostheses (FDPs). The master model was digitally designed following Shillingburg’s all-ceramic restoration tooth preparatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Turki S. Alkhallagi, Manal A. Alqahtani, Thamer Y. Marghalani
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7171
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This in vitro study aims to investigate the fracture properties of 3D-printed resin provisional material designed with different connector dimensions for two-unit fixed dental prostheses (FDPs). The master model was digitally designed following Shillingburg’s all-ceramic restoration tooth preparation guidelines and milled from aluminum. Four two-unit FDPs with different connector dimensions were designed: 2 × 3 mm, 3 × 3 mm, 3 × 4 mm, and 4 × 4 mm (width × length) (Groups A, B, C, and D, respectively; n = 10 for each group). These specimens were printed using 3D-printed resin material (Detax FREEPRINT<sup>®</sup> temp). Forty specimens were subjected to a three-point test using a universal testing machine until fracture. The failure mode was examined under a stereomicroscope. The Kruskal–Wallis test at α = 0.05 revealed non-significant differences in fracture resistance load but significantly different elastic modulus, yield strength, and compressive strength (<i>p</i> = 0.061, <i>p</i> < 0.001, <i>p</i> < 0.001, and <i>p</i> < 0.001, respectively) among the different groups. The 2 × 3 mm connectors had higher means of modulus, yield strength, and compressive strength compared to the other groups. The study found that the maximum load causing fractures in 3D-printed provisional material connectors was consistent, regardless of connector cross-section variations. The 2 × 3 mm group performed best, while the 4 × 4 mm group performed worst.
ISSN:2076-3417