Hand-aware graph convolution network for skeleton-based sign language recognition
Skeleton-based sign language recognition (SLR) is a challenging research area mainly due to the fast and complex hand movement. Currently, graph convolution networks (GCNs) have been employed in skeleton-based SLR and achieved remarkable performance. However, existing GCN-based SLR methods suffer fr...
Enregistré dans:
| Auteurs principaux: | Juan Song, Huixuechun Wang, Jianan Li, Jian Zheng, Zhifu Zhao, Qingshan Li |
|---|---|
| Format: | Article |
| Langue: | anglais |
| Publié: |
KeAi Communications Co., Ltd.
2025-01-01
|
| Collection: | Journal of Information and Intelligence |
| Sujets: | |
| Accès en ligne: | http://www.sciencedirect.com/science/article/pii/S294971592400074X |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Inherent-attribute-aware dual-graph autoencoder for rating prediction
par: Yangtao Zhou, et autres
Publié: (2024-01-01) -
An algorithmic approach to signed fuzzy graph integrity: Complexity, graph operations, and metro rail network applications
par: Chakaravarthy Sankar, et autres
Publié: (2025-09-01) -
On derived t-path, t=2,3 signed graph and t-distance signed graph
par: Deepa Sinha, et autres
Publié: (2025-06-01) -
Dynamic Hypergraph Convolutional Networks for Hand Motion Gesture Sequence Recognition
par: Dong-Xing Jing, et autres
Publié: (2025-06-01) -
Fusion of Multimodal Spatio-Temporal Features and 3D Deformable Convolution Based on Sign Language Recognition in Sensor Networks
par: Qian Zhou, et autres
Publié: (2025-07-01)