Remarks on the norming sets of ${\mathcal L}(^ml_{1}^n)$ and description of the norming sets of ${\mathcal L}(^3l_{1}^2)$

Let $n\in \mathbb{N}, n\geq 2.$ An element $x=(x_1, \ldots, x_n)\in E^n$ is called a {\em norming point} of $T\in {\mathcal L}(^n E)$ if $\|x_1\|=\cdots=\|x_n\|=1$ and $|T(x)|=\|T\|,$ where ${\mathcal L}(^n E)$ denotes the space of all continuous $n$-linear forms on $E.$ For $T\in {\mathcal L}(^n E)...

Full description

Saved in:
Bibliographic Details
Main Author: Sung Guen Kim
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2023-01-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/358
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items