Remarks on the norming sets of ${\mathcal L}(^ml_{1}^n)$ and description of the norming sets of ${\mathcal L}(^3l_{1}^2)$
Let $n\in \mathbb{N}, n\geq 2.$ An element $x=(x_1, \ldots, x_n)\in E^n$ is called a {\em norming point} of $T\in {\mathcal L}(^n E)$ if $\|x_1\|=\cdots=\|x_n\|=1$ and $|T(x)|=\|T\|,$ where ${\mathcal L}(^n E)$ denotes the space of all continuous $n$-linear forms on $E.$ For $T\in {\mathcal L}(^n E)...
Saved in:
Main Author: | Sung Guen Kim |
---|---|
Format: | Article |
Language: | German |
Published: |
Ivan Franko National University of Lviv
2023-01-01
|
Series: | Математичні Студії |
Subjects: | |
Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/358 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
The norming sets of multilinear forms on a certain normed space $\mathbb{R}^n$
by: Sung Guen Kim
Published: (2024-12-01) -
The norming set of a symmetric bilinear form on the plane with the supremum norm
by: S. G. Kim
Published: (2021-06-01) -
Scarcity and Cooperation: The Modulation of Social Norms
by: Qiuling Luo, et al.
Published: (2025-07-01) -
De l’utilité des normes psycholinguistiques pour l’étude de l’accès au lexique mental
by: Patrick Bonin
Published: (2016-12-01) -
The structure of logical, prescriptive and specialized legal norms
by: V. V. Kozhevnikov
Published: (2021-07-01)