Metamaterial-Enhanced MIMO Antenna for Multi-Operator ORAN Indoor Base Stations in 5G Sub-6 GHz Band
This paper presents a novel, four-port, rectangular microstrip, inset-feed multiple-input and multiple-output (MIMO) antenna array, enhanced with metamaterials for improved gain and isolation, specifically designed for multi-operator 5G open radio access network (ORAN)-based indoor software-defined...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/13/7406 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel, four-port, rectangular microstrip, inset-feed multiple-input and multiple-output (MIMO) antenna array, enhanced with metamaterials for improved gain and isolation, specifically designed for multi-operator 5G open radio access network (ORAN)-based indoor software-defined radio (SDR) applications. ORAN is an open-source interoperable framework for radio access networks (RANs), while SDR refers to a radio communication system where functions are implemented via software on a programmable platform. A 3 × 3 metamaterial (MTM) superstrate is placed above the MIMO antenna array to improve gain and reduce the mutual coupling of MIMO. The proposed MIMO antenna operates over a 300 MHz bandwidth (3.5–3.8 GHz), enabling shared infrastructure for multiple operators. The antenna’s dimensions are 75 × 75 × 18.2 mm<sup>3</sup>. The antenna possesses a reduced mutual coupling less than −30 dB and a 3.5 dB enhancement in gain with the help of a novel 3 × 3 MTM superstrate 15 mm above the radiating MIMO elements. A performance evaluation based on simulated results and lab measurements demonstrates the promising value of key MIMO metrics such as a low envelope correlation coefficient (ECC) < 0.002, diversity gain (DG) ~10 dB, total active reflection coefficient (TARC) < −10 dB, and channel capacity loss (CCL) < 0.2 bits/sec/Hz. Real-world testing of the proposed antenna for ORAN-based sub-6 GHz indoor wireless systems demonstrates a downlink throughput of approximately 200 Mbps, uplink throughput of 80 Mbps, and transmission delays below 80 ms. Additionally, a walk test in an indoor environment with a corresponding floor plan and reference signal received power (RSRP) measurements indicates that most of the coverage area achieves RSRP values exceeding −75 dBm, confirming its suitability for indoor applications. |
---|---|
ISSN: | 2076-3417 |