Cell-specific wiring routes information flow through hippocampal CA3

Summary: The hippocampus, critical for learning and memory, is dogmatically described as a trisynaptic circuit where dentate gyrus granule cells (GCs), CA3 pyramidal neurons (PNs), and CA1 PNs are serially connected. However, CA3 also forms an autoassociative network, and its PNs have diverse morpho...

Full description

Saved in:
Bibliographic Details
Main Authors: Jake F. Watson, Victor Vargas-Barroso, Peter Jonas
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124725008514
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: The hippocampus, critical for learning and memory, is dogmatically described as a trisynaptic circuit where dentate gyrus granule cells (GCs), CA3 pyramidal neurons (PNs), and CA1 PNs are serially connected. However, CA3 also forms an autoassociative network, and its PNs have diverse morphologies, intrinsic properties, and GC input levels. How PN subtypes compose this recurrent network is unknown. To determine the synaptic arrangement of identified CA3 PNs, we combine multicellular patch-clamp recording and post hoc morphological analysis in mouse hippocampal slices. PNs can be divided into distinct “superficial” and “deep” subclasses, the latter including previously reported “athorny” cells. Subclasses have distinct input-output transformations and asymmetric connectivity, which is more abundant from superficial to deep PNs, splitting CA3 locally into two parallel recurrent networks. Coincident spontaneous inhibition occurs frequently within but not between subclasses, implying subclass-specific inhibitory innervation. Our results suggest two separately controlled sublayers for parallel information processing in hippocampal CA3.
ISSN:2211-1247