Wearable Fall Detection System with Real-Time Localization and Notification Capabilities
Despite significant progress in fall detection systems, many of the proposed algorithms remain difficult to implement in real-world applications. A common limitation is the lack of location awareness, especially in outdoor scenarios where accurately determining the fall location is crucial for a tim...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/12/3632 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite significant progress in fall detection systems, many of the proposed algorithms remain difficult to implement in real-world applications. A common limitation is the lack of location awareness, especially in outdoor scenarios where accurately determining the fall location is crucial for a timely emergency response. Moreover, the complexity of many existing algorithms poses a challenge for deployment on edge devices, such as wearable systems, which are constrained by limited computational resources and battery life. As a result, these solutions are often impractical for long-term, continuous use in practical settings. To address the aforementioned issues, we developed a portable, wearable device that integrates a microcontroller (MCU), an inertial sensor, and a chip module featuring Global Positioning System (GPS) and Narrowband Internet of Things (NB-IoT) technologies. A low-complexity algorithm based on a finite-state machine was employed to detect fall events, enabling the module to meet the requirements for long-term outdoor use. The proposed algorithm is capable of filtering out eight types of daily activities—running, walking, sitting, ascending stairs, descending stairs, stepping, jumping, and rapid sitting—while detecting four types of falls: forward, backward, left, and right. In case a fall event is detected, the device immediately transmits a fall alert and GPS coordinates to a designated server via NB-IoT. The server then forwards the alert to a specified communication application. Experimental tests demonstrated the system’s effectiveness in outdoor environments. A total of 6750 samples were collected from fifteen test participants, including 6000 daily activity samples and 750 fall events. The system achieved an average sensitivity of 97.9%, an average specificity of 99.9%, and an overall accuracy of 99.7%. The implementation of this system provides enhanced safety assurance for elderly individuals during outdoor activities. |
---|---|
ISSN: | 1424-8220 |