Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator

In the present investigation, inspired by the work on Yamaguchi type class of analytic functions satisfyingthe analytic criteria $\mathfrak{Re}\{\frac{f (z)}{z}\} > 0, $ in the open unit disk $\Delta=\{z \in \mathbb{C}\colon |z|<1\}$ and making use of S\v{a}l\v{a}gean-difference operator, whic...

Full description

Saved in:
Bibliographic Details
Main Authors: T. Panigrahi, G. Murugusundaramoorthy
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2022-06-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/96
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839636039602274304
author T. Panigrahi
G. Murugusundaramoorthy
author_facet T. Panigrahi
G. Murugusundaramoorthy
author_sort T. Panigrahi
collection DOAJ
description In the present investigation, inspired by the work on Yamaguchi type class of analytic functions satisfyingthe analytic criteria $\mathfrak{Re}\{\frac{f (z)}{z}\} > 0, $ in the open unit disk $\Delta=\{z \in \mathbb{C}\colon |z|<1\}$ and making use of S\v{a}l\v{a}gean-difference operator, which is a special type of Dunkl operator with Dunkl constant $\vartheta$ in $\Delta$ , we designate definite new classes of analytic functions $\mathcal{R}_{\lambda}^{\beta}(\psi)$ in $\Delta$. For functionsin this new class , significant coefficient estimates $|a_2|$ and $a_3|$ are obtained. Moreover, Fekete-Szeg\H{o} inequalities and second Hankel determinant for the function belonging to this class are derived. By fixing the parameters a number of special cases are developed are new (or generalization) of the results of earlier researchers in this direction.
format Article
id doaj-art-637e6f70d8ff4b80b250adee70c42ef8
institution Matheson Library
issn 1027-4634
2411-0620
language deu
publishDate 2022-06-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-637e6f70d8ff4b80b250adee70c42ef82025-07-08T09:08:39ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202022-06-0157214715610.30970/ms.57.2.147-15696Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operatorT. Panigrahi0G. Murugusundaramoorthy1Institute of Mathematics and Applications Andharua, Bhubaneswar Odisha, IndiaSr.Professor of Mathematics, School of Advanced Sciences, VIT UNIVERSITY, Vellore-632 014, India, www.vit.ac.in Alternate Email: gms@vit.ac.inIn the present investigation, inspired by the work on Yamaguchi type class of analytic functions satisfyingthe analytic criteria $\mathfrak{Re}\{\frac{f (z)}{z}\} > 0, $ in the open unit disk $\Delta=\{z \in \mathbb{C}\colon |z|<1\}$ and making use of S\v{a}l\v{a}gean-difference operator, which is a special type of Dunkl operator with Dunkl constant $\vartheta$ in $\Delta$ , we designate definite new classes of analytic functions $\mathcal{R}_{\lambda}^{\beta}(\psi)$ in $\Delta$. For functionsin this new class , significant coefficient estimates $|a_2|$ and $a_3|$ are obtained. Moreover, Fekete-Szeg\H{o} inequalities and second Hankel determinant for the function belonging to this class are derived. By fixing the parameters a number of special cases are developed are new (or generalization) of the results of earlier researchers in this direction.http://matstud.org.ua/ojs/index.php/matstud/article/view/96analytic functionsubordinationhankel determinants$\check{a}$l$\check{a}$gean-difference operator
spellingShingle T. Panigrahi
G. Murugusundaramoorthy
Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator
Математичні Студії
analytic function
subordination
hankel determinant
s$\check{a}$l$\check{a}$gean-difference operator
title Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator
title_full Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator
title_fullStr Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator
title_full_unstemmed Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator
title_short Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator
title_sort second hankel determinant for a subclass of analytic functions defined by s check a l check a gean difference operator
topic analytic function
subordination
hankel determinant
s$\check{a}$l$\check{a}$gean-difference operator
url http://matstud.org.ua/ojs/index.php/matstud/article/view/96
work_keys_str_mv AT tpanigrahi secondhankeldeterminantforasubclassofanalyticfunctionsdefinedbyscheckalcheckageandifferenceoperator
AT gmurugusundaramoorthy secondhankeldeterminantforasubclassofanalyticfunctionsdefinedbyscheckalcheckageandifferenceoperator