Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator
In the present investigation, inspired by the work on Yamaguchi type class of analytic functions satisfyingthe analytic criteria $\mathfrak{Re}\{\frac{f (z)}{z}\} > 0, $ in the open unit disk $\Delta=\{z \in \mathbb{C}\colon |z|<1\}$ and making use of S\v{a}l\v{a}gean-difference operator, whic...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | German |
Published: |
Ivan Franko National University of Lviv
2022-06-01
|
Series: | Математичні Студії |
Subjects: | |
Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/96 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1839636039602274304 |
---|---|
author | T. Panigrahi G. Murugusundaramoorthy |
author_facet | T. Panigrahi G. Murugusundaramoorthy |
author_sort | T. Panigrahi |
collection | DOAJ |
description | In the present investigation, inspired by the work on Yamaguchi type class of analytic functions satisfyingthe analytic criteria $\mathfrak{Re}\{\frac{f (z)}{z}\} > 0, $ in the open
unit disk $\Delta=\{z \in \mathbb{C}\colon |z|<1\}$ and making use of S\v{a}l\v{a}gean-difference operator, which is a special type of Dunkl operator with Dunkl constant $\vartheta$ in $\Delta$ , we
designate definite new classes of analytic functions $\mathcal{R}_{\lambda}^{\beta}(\psi)$ in $\Delta$. For functionsin this new class , significant
coefficient estimates $|a_2|$ and $a_3|$ are obtained. Moreover, Fekete-Szeg\H{o} inequalities and second Hankel determinant for the function belonging to this class are derived. By fixing the parameters a number of special cases are developed are new (or generalization) of the results of earlier researchers in this direction. |
format | Article |
id | doaj-art-637e6f70d8ff4b80b250adee70c42ef8 |
institution | Matheson Library |
issn | 1027-4634 2411-0620 |
language | deu |
publishDate | 2022-06-01 |
publisher | Ivan Franko National University of Lviv |
record_format | Article |
series | Математичні Студії |
spelling | doaj-art-637e6f70d8ff4b80b250adee70c42ef82025-07-08T09:08:39ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202022-06-0157214715610.30970/ms.57.2.147-15696Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operatorT. Panigrahi0G. Murugusundaramoorthy1Institute of Mathematics and Applications Andharua, Bhubaneswar Odisha, IndiaSr.Professor of Mathematics, School of Advanced Sciences, VIT UNIVERSITY, Vellore-632 014, India, www.vit.ac.in Alternate Email: gms@vit.ac.inIn the present investigation, inspired by the work on Yamaguchi type class of analytic functions satisfyingthe analytic criteria $\mathfrak{Re}\{\frac{f (z)}{z}\} > 0, $ in the open unit disk $\Delta=\{z \in \mathbb{C}\colon |z|<1\}$ and making use of S\v{a}l\v{a}gean-difference operator, which is a special type of Dunkl operator with Dunkl constant $\vartheta$ in $\Delta$ , we designate definite new classes of analytic functions $\mathcal{R}_{\lambda}^{\beta}(\psi)$ in $\Delta$. For functionsin this new class , significant coefficient estimates $|a_2|$ and $a_3|$ are obtained. Moreover, Fekete-Szeg\H{o} inequalities and second Hankel determinant for the function belonging to this class are derived. By fixing the parameters a number of special cases are developed are new (or generalization) of the results of earlier researchers in this direction.http://matstud.org.ua/ojs/index.php/matstud/article/view/96analytic functionsubordinationhankel determinants$\check{a}$l$\check{a}$gean-difference operator |
spellingShingle | T. Panigrahi G. Murugusundaramoorthy Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator Математичні Студії analytic function subordination hankel determinant s$\check{a}$l$\check{a}$gean-difference operator |
title | Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator |
title_full | Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator |
title_fullStr | Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator |
title_full_unstemmed | Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator |
title_short | Second Hankel determinant for a subclass of analytic functions defined by S$\check{a}$l$\check{a}$gean-difference operator |
title_sort | second hankel determinant for a subclass of analytic functions defined by s check a l check a gean difference operator |
topic | analytic function subordination hankel determinant s$\check{a}$l$\check{a}$gean-difference operator |
url | http://matstud.org.ua/ojs/index.php/matstud/article/view/96 |
work_keys_str_mv | AT tpanigrahi secondhankeldeterminantforasubclassofanalyticfunctionsdefinedbyscheckalcheckageandifferenceoperator AT gmurugusundaramoorthy secondhankeldeterminantforasubclassofanalyticfunctionsdefinedbyscheckalcheckageandifferenceoperator |