Development of a Compliant Pediatric Upper-Limb Training Robot Using Series Elastic Actuators

Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbanc...

Full description

Saved in:
Bibliographic Details
Main Authors: Jhon Rodriguez-Torres, Paola Niño-Suarez, Mauricio Mauledoux
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/14/7/353
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly suitable for pediatric applications. In children aged 2 to 5 years—where motor control is still developing and movements can be unpredictable or unstructured—SEAs provide a compliant mechanical response that ensures user protection and enables safe physical interaction. This study explores the role of SEAs as a central component for imparting compliance and backdrivability in robotic systems designed for upper-limb training. A dynamic model is proposed, incorporating interaction with the user’s limb, along with a computed torque control strategy featuring integral action. The system’s performance is validated through simulations and experimental tests, demonstrating stable trajectory tracking, disturbance absorption, and effective impedance decoupling. The results support the use of SEAs as a foundational technology for developing safe adaptive robotic solutions in pediatric contexts capable of responding flexibly to user variability and promoting secure interaction in early motor development environments.
ISSN:2076-0825