Non-Destructive Testing and Evaluation of Hybrid and Advanced Structures: A Comprehensive Review of Methods, Applications, and Emerging Trends

Non-destructive testing (NDT) and non-destructive evaluation (NDE) are essential tools for ensuring the structural integrity, safety, and reliability of critical systems across the aerospace, civil infrastructure, energy, and advanced manufacturing sectors. As engineered materials evolve into increa...

Full description

Saved in:
Bibliographic Details
Main Authors: Farima Abdollahi-Mamoudan, Clemente Ibarra-Castanedo, Xavier P. V. Maldague
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/12/3635
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-destructive testing (NDT) and non-destructive evaluation (NDE) are essential tools for ensuring the structural integrity, safety, and reliability of critical systems across the aerospace, civil infrastructure, energy, and advanced manufacturing sectors. As engineered materials evolve into increasingly complex architectures such as fiber-reinforced polymers, fiber–metal laminates, sandwich composites, and functionally graded materials, traditional NDT techniques face growing limitations in sensitivity, adaptability, and diagnostic reliability. This comprehensive review presents a multi-dimensional classification of NDT/NDE methods, structured by physical principles, functional objectives, and application domains. Special attention is given to hybrid and multi-material systems, which exhibit anisotropic behavior, interfacial complexity, and heterogeneous defect mechanisms that challenge conventional inspection. Alongside established techniques like ultrasonic testing, radiography, infrared thermography, and acoustic emission, the review explores emerging modalities such as capacitive sensing, electromechanical impedance, and AI-enhanced platforms that are driving the future of intelligent diagnostics. By synthesizing insights from the recent literature, the paper evaluates comparative performance metrics (e.g., sensitivity, resolution, adaptability); highlights integration strategies for embedded monitoring and multimodal sensing systems; and addresses challenges related to environmental sensitivity, data interpretation, and standardization. The transformative role of NDE 4.0 in enabling automated, real-time, and predictive structural assessment is also discussed. This review serves as a valuable reference for researchers and practitioners developing next-generation NDT/NDE solutions for hybrid and high-performance structures.
ISSN:1424-8220