A Semi-Active Control Method for Trains Based on Fuzzy Rules of Non-Stationary Wind Fields
The stochastic fluctuation characteristics of wind speed can significantly affect the control performance of train suspension systems. To enhance the running quality of trains in non-stationary wind fields, this paper proposes a semi-active control method for trains based on fuzzy rules of non-stati...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | World Electric Vehicle Journal |
Subjects: | |
Online Access: | https://www.mdpi.com/2032-6653/16/7/367 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stochastic fluctuation characteristics of wind speed can significantly affect the control performance of train suspension systems. To enhance the running quality of trains in non-stationary wind fields, this paper proposes a semi-active control method for trains based on fuzzy rules of non-stationary wind fields. Firstly, a dynamic model of the train and suspension system was established based on the CRH2 (China Railway High-Speed 2) high-speed train and magnetorheological dampers. Then, using frequency–time transformation technology, the non-stationary wind load excitation and train response patterns under 36 common operating conditions were calculated. Finally, by analyzing the response patterns of the train under different operating conditions, a comprehensive control rule table for the semi-active suspension system of the train under non-stationary wind fields was established, and a fuzzy controller suitable for non-stationary wind fields was designed. To verify the effectiveness of the proposed method, the running smoothness of the train was analyzed using a train-semi-active suspension system co-simulation model based on real wind speed data from the Lanzhou–Xinjiang railway line. The results demonstrate that the proposed method significantly improves the running quality of the train. Specifically, when the wind speed reaches 20 m/s and the train speed reaches 200 km/h, the lateral Sperling index is increased by 46.4% compared to the optimal standard index, and the vertical Sperling index is increased by 71.6% compared to the optimal standard index. |
---|---|
ISSN: | 2032-6653 |