Deep-learning based colorectal cancer pathological analysis with hyperspectral light field microscopy
Summary: 5D hyperspectral light field (H-LF) integrates multi-angular and multi-spectral observation, offering a comprehensive opportunity to capture more detailed information from biological samples. In this article, we integrate hyperspectral light field microscopy imaging to analyze H&E-stain...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-08-01
|
Series: | iScience |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004225012489 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary: 5D hyperspectral light field (H-LF) integrates multi-angular and multi-spectral observation, offering a comprehensive opportunity to capture more detailed information from biological samples. In this article, we integrate hyperspectral light field microscopy imaging to analyze H&E-stained whole slide images (WSIs) of colorectal cancer (CRC). Specifically, we design a triple separable transformer encoder (HLFTST) that efficiently extracts features by decoupling the 5D H-LF data into lower-dimensional components and applying self-attention for global interaction. We also introduce a text encoder-decoder to align H-LF features with language, enabling automatic cell classification and pathology report generation through a three-stage training pipeline. Experiments show our method outperforms 2D, 3D, and 4D baselines, improving precision by up to 4.88% and F1 score by 4.21% across five CRC cell categories. Additionally, it generates meaningful pathology descriptions, highlighting its potential for enhancing diagnostics and supporting personalized treatment in broader biomedical settings. |
---|---|
ISSN: | 2589-0042 |