Street View-Enabled Explainable Machine Learning for Spatial Optimization of Non-Motorized Transportation-Oriented Urban Design

To advance evidence-based urban design prioritizing non-motorized mobility, this study proposes a street view-enabled explainable machine learning framework that systematically links built environment semantics to non-motorized transportation vitality optimization. By integrating Baidu Street View i...

Full description

Saved in:
Bibliographic Details
Main Authors: Yichen Ruan, Xiaoyi Zhang, Shaohua Wang, Xiuxiu Chen, Qiuxiao Chen
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/14/7/1347
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To advance evidence-based urban design prioritizing non-motorized mobility, this study proposes a street view-enabled explainable machine learning framework that systematically links built environment semantics to non-motorized transportation vitality optimization. By integrating Baidu Street View images with deep learning-based object detection (Faster R-CNN), we quantify fine-grained human-powered and mechanically assisted mobility vitality. These features are fused with multi-source geospatial data encompassing 23 built environment variables into an interpretable machine learning pipeline using SHAP-optimized random forest models. The key findings reveal distinct nonlinear response patterns between HP and MA modes to built environment factors; for instance, a notable promotion in mechanically assisted NMT vitality is observed as enterprise density increases beyond 0.2 facilities per ha. Emergent synergistic and threshold effects are evident from variable interactions requiring multidimensional planning consideration, as demonstrated in phenomena such as the peaking of human-powered NMT vitality occurring at public facility densities of 0.2–0.8 facilities per ha, enterprise densities of 0.6–1 facilities per ha, and spatial heterogeneity patterns identified through Bivariate Local Moran’s I clustering. This research contributes an innovative technical framework combining street view image recognition with explainable AI, while practically informing urban planning through evidence-based mobility zone classification and targeted strategy formulation, enabling more precise optimization of pedestrian-/cyclist-oriented urban spaces.
ISSN:2073-445X