Boron-Based Compounds for Solid-State Hydrogen Storage: A Review

Due to the depletion of hydrocarbon resources worldwide, intensive research is being conducted to identify alternative energy carriers. Hydrogen has emerged as a promising candidate due to its high energy density and environmentally friendly nature. However, large-scale implementation of hydrogen en...

Full description

Saved in:
Bibliographic Details
Main Authors: Yernat Kozhakhmetov, Sherzod Kurbanbekov, Nurya Mukhamedova, Azamat Urkunbay, Aibar Kizatov, Leila Bayatanova, Raushan Nurdillayeva, Dilnoza Baltabayeva
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/15/6/536
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the depletion of hydrocarbon resources worldwide, intensive research is being conducted to identify alternative energy carriers. Hydrogen has emerged as a promising candidate due to its high energy density and environmentally friendly nature. However, large-scale implementation of hydrogen energy is hindered by the lack of safe, efficient, and cost-effective storage methods. Among the various materials studied for solid-state hydrogen storage, boron nitride (BN)-based compounds have attracted significant attention owing to their high thermal stability, tunable morphology, and potential for physisorption-based storage. This review focuses on recent advances in the synthesis, functionalization, and structural optimization of BN-based materials, including nanotubes, nanosheets, porous frameworks, and chemically modified BN. Although other boron-containing hydrides such as LiBH<sub>4</sub>, Mg(BH<sub>4</sub>)<sub>2</sub>, and closo-borates are briefly mentioned for comparison, the primary emphasis is placed on BN-related systems. This paper discusses various modification strategies aimed at enhancing hydrogen uptake and reversibility, offering insights into the future potential of BN-based materials in hydrogen storage technologies.
ISSN:2073-4352