Chimeric Antigen Receptor (CAR) T Cells Releasing Soluble SLAMF6 Isoform 2 Gain Superior Anti-Cancer Cell Functionality in an Auto-Stimulatory Fashion

T cells equipped with chimeric antigen receptors (CARs) have evolved into an essential pillar of lymphoma therapy, reaching second-line treatment. In solid cancers, however, a dearth of lasting CAR T cell activation poses the major obstacle to achieving a substantial and durable anti-tumor response....

Full description

Saved in:
Bibliographic Details
Main Authors: Dennis Christoph Harrer, Tim Schlierkamp-Voosen, Markus Barden, Hong Pan, Maria Xydia, Wolfgang Herr, Jan Dörrie, Niels Schaft, Hinrich Abken
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/14/12/901
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:T cells equipped with chimeric antigen receptors (CARs) have evolved into an essential pillar of lymphoma therapy, reaching second-line treatment. In solid cancers, however, a dearth of lasting CAR T cell activation poses the major obstacle to achieving a substantial and durable anti-tumor response. To extend T cell cytotoxic capacities, we engineered CAR T cells to constitutively release an immunostimulatory variant of soluble SLAMF6. While wild-type SLAMF6 induces T cell exhaustion, CAR T cells with the soluble Δ17-65 SLAMF6 variant exhibited refined, CAR redirected functionality compared to canonical CAR T cells. CD28-ζ CAR T cells releasing soluble SLAMF6 increased IFN-γ secretion and augmented CD25 upregulation on CD4<sup>+</sup> CAR T cells upon CAR engagement by pancreatic carcinoma and melanoma cells. Moreover, under conditions of repetitive antigen encounter, SLAMF6-secreting CAR T cells evinced superior cytotoxic capacity in the long term. Mechanistically, SLAMF6-secreting CAR T cells showed predominantly a central memory phenotype, a PD-1<sup>-</sup> TIGIT<sup>-</sup> double negative profile, and reduced expression of exhaustion-related transcription factors IRF-4 and TOX with augmented amplification and persistence capacities. Overall, CAR T cells engineered with the release isoform 2 SLAMF6 establish an auto-stimulatory loop with the potential to boost the cytolytic attack against solid tumors.
ISSN:2073-4409