TriagE-NLU: A Natural Language Understanding System for Clinical Triage and Intervention in Multilingual Emergency Dialogues
Telemedicine in emergency contexts presents unique challenges, particularly in multilingual and low-resource settings where accurate, clinical understanding and triage decision support are critical. This paper introduces TriagE-NLU, a novel multilingual natural language understanding system designed...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Future Internet |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-5903/17/7/314 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Telemedicine in emergency contexts presents unique challenges, particularly in multilingual and low-resource settings where accurate, clinical understanding and triage decision support are critical. This paper introduces TriagE-NLU, a novel multilingual natural language understanding system designed to perform both semantic parsing and clinical intervention classification from emergency dialogues. The system is built on a federated learning architecture to ensure data privacy and adaptability across regions and is trained using TriageX, a synthetic, clinically grounded dataset covering five languages (English, Spanish, Romanian, Arabic, and Mandarin). TriagE-NLU integrates fine-tuned multilingual transformers with a hybrid rules-and-policy decision engine, enabling it to parse structured medical information (symptoms, risk factors, temporal markers) and recommend appropriate interventions based on recognized patterns. Evaluation against strong multilingual baselines, including mT5, mBART, and XLM-RoBERTa, demonstrates superior performance by TriagE-NLU, achieving F1 scores of 0.91 for semantic parsing and 0.89 for intervention classification, along with 0.92 accuracy and a BLEU score of 0.87. These results validate the system’s robustness in multilingual emergency telehealth and its ability to generalize across diverse input scenarios. This paper establishes a new direction for privacy-preserving, AI-assisted triage systems. |
---|---|
ISSN: | 1999-5903 |