Deep learning to evaluate seismic-induced soil liquefaction and modified transfer learning between various data sources

Soil liquefaction assessment remains a crucial and complex challenge in seismic geotechnical engineering due to various liquefaction records and limited information, which entails a more generalized off-the-shelf model that can achieve favourable performance on different data sources. In this work,...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongwei Guo, Chao Zhang, Hongyuan Fang, Timon Rabczuk, Xiaoying Zhuang
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2025-08-01
Series:Underground Space
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S246796742400134X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil liquefaction assessment remains a crucial and complex challenge in seismic geotechnical engineering due to various liquefaction records and limited information, which entails a more generalized off-the-shelf model that can achieve favourable performance on different data sources. In this work, a deep learning model is built and investigated on the soil liquefaction prediction and a modified transfer learning scheme between different data sources is presented. Various datasets, including shear wave velocity-based, CPT-based, SPT-based, and real cases, are collected and utilized to verify the effectiveness and accuracy of the proposed model. Because different data sources in soil liquefaction generally share several geotechnical and mechanical parameters, we work to combine model prior information, feature mapping and data reconstruction in transfer learning models to tackle multi-source domain adaption, which can be further applied to other predictive analysis and facilitate online learning models in geotechnical engineering. Also, the deep learning model is compared with several classical machine learning and ensemble learning models and the modified transfer learning model is formulated by comparing different feature transformation techniques integrated with various feature-based and instance-based transfer learning methods. The accuracy and effectiveness of the deep learning and modified transfer learning models have been validated in the numerical study.
ISSN:2467-9674