Expression of FGF23 and α-KLOTHO in Normal Human Kidney Development and Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)

Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric renal failure, but the molecular mechanisms driving these conditions are not yet fully understood. Fibroblast Growth Factor 23 (FGF23) and its co-receptor α-KLOTHO play crucial roles in regulating calcium and...

Full description

Saved in:
Bibliographic Details
Main Authors: Patricija Bajt, Anita Racetin, Nela Kelam, Nikola Pavlović, Petar Todorović, Marinela Jelinčić Korčulanin, Natalija Filipović, Ivana Kuzmić Prusac, Fila Raguž, Katarina Vukojević
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/6/811
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric renal failure, but the molecular mechanisms driving these conditions are not yet fully understood. Fibroblast Growth Factor 23 (FGF23) and its co-receptor α-KLOTHO play crucial roles in regulating calcium and phosphate homeostasis in adult kidneys, but their roles in kidney development and the pathogenesis of CAKUT remain unclear. Because of that, we analyzed the spatial and temporal expression of FGF23 and α-KLOTHO in normal fetal kidney development and CAKUT using an immunofluorescence technique. Our results demonstrate a dynamic pattern of FGF23 and α-KLOTHO expression in healthy kidney development, with FGF23 levels decreasing and α-KLOTHO levels increasing with gestational age. Also, we showed that FGF23 expression was significantly reduced in horseshoe (HKs) and duplex kidneys (DKs), while α-KLOTHO expression remained unchanged across all CAKUT conditions. Based on our results, we suggest that altered FGF23 expression in CAKUT contributes to disease pathogenesis and may represent a potential therapeutic target.
ISSN:2218-273X