Upper and lower $(\alpha, \beta,\theta,\delta,\mathcal{I})$-continuous multifunctions

Let $(X, \tau)$ and $(Y, \sigma)$ be topological spaces in which no separation axioms are assumed, unless explicitly stated and if $\mathcal{I}$ is an ideal on $X$. Given a multifunction $F\colon (X, \tau)\rightarrow (Y, \sigma)$, $\alpha,\beta$ operators on $(X, \tau)$, $\theta,\delta$ operators on...

Full description

Saved in:
Bibliographic Details
Main Authors: C. Carpintero, E. Rosas, J. Sanabria, J. Vielma
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2021-06-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/25
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $(X, \tau)$ and $(Y, \sigma)$ be topological spaces in which no separation axioms are assumed, unless explicitly stated and if $\mathcal{I}$ is an ideal on $X$. Given a multifunction $F\colon (X, \tau)\rightarrow (Y, \sigma)$, $\alpha,\beta$ operators on $(X, \tau)$, $\theta,\delta$ operators on $(Y, \sigma)$ and $\mathcal{I}$ a proper ideal on $X$. We introduce and study upper and lower $(\alpha, \beta,\theta,\delta,\mathcal{I})$-continuous multifunctions. A multifunction $F\colon (X, \tau)\rightarrow (Y, \sigma)$ is said to be: {1)} upper-$(\alpha, \beta,\theta,\delta,\mathcal{I})$-continuous if $\alpha(F^{+}(\delta(V)))\setminus \beta(F^{+}(\theta(V)))\in \mathcal{I}$ for each open subset $V$ of $Y$;\ {2)} lower-$(\alpha, \beta,\theta,\delta,\mathcal{I})$-continuous if $\alpha(F^{-}(\delta(V)))\setminus \beta(F^{-}(\theta(V)))\in \mathcal{I}$ for each open subset $V$ of $Y$;\ {3)} $(\alpha, \beta,\theta,\delta,\mathcal{I})$-continuous if it is upper-\ %$(\alpha, \beta,\theta,\delta,\mathcal{I})$-continuous and lower-$(\alpha, \beta,\theta,\delta,\mathcal{I})$-continuous. In particular, the following statements are proved in the article (Theorem 2): Let $\alpha,\beta$ be operators on $(X, \tau)$ and $\theta, \theta^{*}, \delta$ operators on $(Y, \sigma)$: \noi\ \ {1.} The multifunction $F\colon (X, \tau)\rightarrow (Y, \sigma)$ is upper $(\alpha,\beta,\theta\cap \theta^{*},\delta,\mathcal{I})$-continuous if and only if it is both upper $(\alpha,\beta,\theta,\delta,\mathcal{I})$-continuous and upper $(\alpha,\beta,\theta^{*},\delta,\mathcal{I})$-continuous. \noi\ \ {2.} The multifunction $F\colon (X, \tau)\rightarrow (Y, \sigma)$ is lower $(\alpha,\beta,\theta\cap \theta^{*},\delta,\mathcal{I})$-continuous if and only if it is both lower $(\alpha,\beta,\theta,\delta,\mathcal{I})$-continuous and lower $(\alpha,\beta,\theta^{*},\delta,\mathcal{I})$-continuous, provided that $\beta(A\cap B) =\beta(A)\cap \beta(B)$ for any subset $A,B$ of $X$.
ISSN:1027-4634
2411-0620