Risk Priority Number Measurement for Construction Safety Risks in Upper Structure Projects of Military Airbase Hangars Based on Activity
Aircraft hangars are essential in the aviation industry, providing crucial maintenance and protection for aviation assets. However, constructing these upper structures involves significant safety risks. Due to the complexity of upper structure construction, it is vital to prioritize safety to preven...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-02-01
|
Series: | Engineering Proceedings |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-4591/84/1/36 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aircraft hangars are essential in the aviation industry, providing crucial maintenance and protection for aviation assets. However, constructing these upper structures involves significant safety risks. Due to the complexity of upper structure construction, it is vital to prioritize safety to prevent workplace accidents. Ensuring construction safety is not only crucial for operational efficiency but also aligns with several Sustainable Development Goals (SDGs), such as Decent Work and Economic Growth (SDG 8) and Industry, Innovation, and Infrastructure (SDG 9). This study assesses the safety risks associated with hangar construction using activity-based failure modes and effects analysis (FMEA). A mixed-method approach is adopted, incorporating insights from five construction safety experts and data from 100 individuals directly involved in the upper structure construction of the spaceframe hangar. Descriptive data analysis was employed to establish the foundation for computing risk priority numbers (RPNs) using the FMEA technique. Three primary activities were identified as having extremely high risks: workers falling from heights during the lifting and erection of the space frame, workers falling from heights during basement excavation while installing floor slab formwork, and workers falling from heights during the casting of floor slabs. These activities present safety risks with RPN values ranging from 64 to 100, including incidents of workers falling from heights and being struck by materials. This study serves as a crucial reference for formulating construction safety plans that encompass risk identification, assessment, and control measures. The findings provide essential insights into various safety hazards in construction projects, particularly those related to military infrastructure. By identifying and assessing these risks, the research facilitates the development of more effective and comprehensive safety protocols. Implementing the recommended control measures ensures a proactive approach to mitigating potential accidents and injuries. Consequently, this research contributes to academic knowledge and enhances safety standards and practices within the construction industry. |
---|---|
ISSN: | 2673-4591 |