Study on Dust Distribution Law in Open-Pit Coal Mines Based on Depth Variation
This study examines the influence mechanism of mining depth evolution on dust distribution, using the An Tai Bao open-pit coal mine as the research subject. A spatial coordinate system of the mining area was established utilizing a GIS positioning system, and high-resolution topographic data were ex...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/16/7/771 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study examines the influence mechanism of mining depth evolution on dust distribution, using the An Tai Bao open-pit coal mine as the research subject. A spatial coordinate system of the mining area was established utilizing a GIS positioning system, and high-resolution topographic data were extracted using Global Mapper. The research team developed a three-dimensional geological model updating algorithm with depth gradient as the characteristic parameter, enabling dynamic monitoring of mining depth with a model iteration accuracy of 0.5 m per update. A Fluent-based numerical simulation method was employed to construct a depth-dependent dust migration field solving system, aiming to elucidate the three-dimensional coupling mechanism between mining depth and dust dispersion. The findings reveal that mining depth demonstrates a three-stage critical response to dust migration. When the depth surpasses the threshold of 150 m, the wind speed attenuation rate at the pit bottom exhibits a marked change, and the dust dispersion distance decreases by 62% compared to shallow mining conditions. The slope pressure field evolution shows a significant depth-enhancement effect, with the maximum wind pressure at the leeward step boundary increasing by 22–35% for every additional 50 m of depth, resulting in dust accumulation zones with distinct depth-related characteristics. The west wind scenario demonstrates a particularly notable depth amplification effect, with the dust dispersion range in a 200-meter-deep pit expanding by 53.7% compared to the standard west wind condition. Furthermore, the interaction between particle size and depth causes the dust migration distance to exhibit exponential decay as depth increases. This research elucidates the progressive constraining influence of mining depth, a critical control parameter, on dust migration patterns. It establishes a depth-oriented theoretical framework for dust prevention and control strategies in deep open-pit mines. |
---|---|
ISSN: | 2073-4433 |