Theoretical Analysis of Plasmon-Induced Transparency in MIM Waveguide Bragg Grating Coupled With a Single Subradiant Resonator
A plasmon-induced transparency (PIT) spectral response in an ultracompact plasmonic structure composed of a metal–insulator–metal waveguide Bragg grating coupled with an air rectangle cavity is proposed, and the corresponding transmission characteristics are investigated theore...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2017-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8039171/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A plasmon-induced transparency (PIT) spectral response in an ultracompact plasmonic structure composed of a metal–insulator–metal waveguide Bragg grating coupled with an air rectangle cavity is proposed, and the corresponding transmission characteristics are investigated theoretically and numerically. By using the transmission line theory (TLT), a remarkable PIT transmission can be proposed in this structure. Moreover, we study the transmission as a function of the coupling distance between the air cavity and insulator layer, and we also discuss the transmission as a function of the thickness of air cavity. To validate the correctness of the TLT results, we have compared them with the finite-difference time-domain method. Both of them agree well with each other. Thus, our results can offer a new possibility and important theory analysis for the designs of the optical switching devices, sensors, and slow light devices in highly integrated optical circuits. |
---|---|
ISSN: | 1943-0655 |