Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theorem
We consider a class of vector-valued entire functions $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$. For this class of functions there is introduced a concept of boundedness of $\mathbf{L}$-index in joint variables. Let $|\cdot|_p$ be a norm in $\mathbb{C}^p$. Let $\mathbf{L}(z)=(l_{1}(z),\...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | German |
Published: |
Ivan Franko National University of Lviv
2020-10-01
|
Series: | Математичні Студії |
Subjects: | |
Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/131 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1839636037322670080 |
---|---|
author | A. I. Bandura V. P. Baksa |
author_facet | A. I. Bandura V. P. Baksa |
author_sort | A. I. Bandura |
collection | DOAJ |
description | We consider a class of vector-valued entire functions $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$. For this class of functions there is introduced a concept of boundedness of $\mathbf{L}$-index in joint variables.
Let $|\cdot|_p$ be a norm in $\mathbb{C}^p$. Let $\mathbf{L}(z)=(l_{1}(z),\ldots,l_{n}(z))$, where $l_{j}(z)\colon \mathbb{C}^{n}\to \mathbb{R}_+$ is a positive continuous function.
An entire vector-valued function $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$ is said to be of
bounded $\mathbf{L}$-index (in joint variables), if there exists $n_{0}\in \mathbb{Z}_{+}$ such that
$\displaystyle \forall z\in G \ \ \forall J \in \mathbb{Z}^n_{+}\colon \quad
\frac{|F^{(J)}(z)|_p}{J!\mathbf{L}^J(z)}\leq \max \left \{\frac{|F^{(K)}(z)|_p}{K!\mathbf{L}^K(z)} \colon K\in \mathbb{Z}^n_{+}, \|K\|\leq n_{0} \right \}.$
We assume the function $\mathbf{L}\colon \mathbb{C}^n\to\mathbb{R}^p_+$ such that $0< \lambda _{1,j}(R)\leq\lambda _{2,j}(R)<\infty$ for any $j\in \{1,2,\ldots, p\}$ and $\forall R\in \mathbb{R}_{+}^{p},$
where $\lambda _{1,j}(R)=\inf\limits_{z_{0}\in \mathbb{C}^{p}} \inf \left \{{l_{j}(z)}/{l_{j}(z_{0})}\colon z\in \mathbb{D}^{n}[z_{0},R/\mathbf{L}(z_{0})]\right \},$ $\lambda _{2,j}(R)$ is defined analogously with replacement $\inf$ by $\sup$.
It is proved the following theorem:
Let $|A|_p=\max\{|a_j|\colon 1\leq j\leq p\}$ for $A=(a_1,\ldots,a_p)\in\mathbb{C}^p$. An entire vector-valued function $F$ has bounded $\mathbf{L}$-index in joint variables if and only if for every $R\in \mathbb{R}^{n}_+$ there exist $n_{0}\in \mathbb{Z}_{+}$, $p_0>0$ such that for all $z_{0}\in \mathbb{C}^{n}$ there exists $K_{0}\in \mathbb{Z}_{+}^{n}$, $\|K_0\|\leq n_{0}$, satisfying inequality
$\displaystyle
\!\max\!\left \{\frac{|F^{(K)}(z)|_p}{K!\mathbf{L}^{K}(z)} \colon \|K\|\leq n_{0},z\in \mathbb{D}^{n}[z_{0},R/\mathbf{L}(z_{0})]\right \}%\leq \nonumber\\
\label{eq:5}
\leq p_{0}\frac{|F^{(K_0)}(z_0)|_p}{K_0!\mathbf{L}^{K_0}(z_0)},
$
where $\mathbb{D}^{n}[z_{0},R]=\{z=(z_1,\ldots,z_n)\in \mathbb{C}^{n}\colon |z_1-z_{0,1}|<r_{1},\ldots, |z_n-z_{0,n}|<r_{n}\}$ is the polydisc with $z_0=(z_{0,1},\ldots,z_{0,n}),$\ $R=(r_{1},\ldots,r_{n})$.
This theorem is an analog of Fricke's Theorem obtained for entire functions of bounded index of one complex variable. |
format | Article |
id | doaj-art-544b5f28164440b9aacacb51f8ebad77 |
institution | Matheson Library |
issn | 1027-4634 2411-0620 |
language | deu |
publishDate | 2020-10-01 |
publisher | Ivan Franko National University of Lviv |
record_format | Article |
series | Математичні Студії |
spelling | doaj-art-544b5f28164440b9aacacb51f8ebad772025-07-08T09:14:30ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202020-10-01541566310.30970/ms.54.1.56-63131Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theoremA. I. Bandura0V. P. Baksa1Ivano-Frankivsk National Tecnical University of OIl and GasIvan Franko National University of Lviv, Lviv, UkraineWe consider a class of vector-valued entire functions $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$. For this class of functions there is introduced a concept of boundedness of $\mathbf{L}$-index in joint variables. Let $|\cdot|_p$ be a norm in $\mathbb{C}^p$. Let $\mathbf{L}(z)=(l_{1}(z),\ldots,l_{n}(z))$, where $l_{j}(z)\colon \mathbb{C}^{n}\to \mathbb{R}_+$ is a positive continuous function. An entire vector-valued function $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$ is said to be of bounded $\mathbf{L}$-index (in joint variables), if there exists $n_{0}\in \mathbb{Z}_{+}$ such that $\displaystyle \forall z\in G \ \ \forall J \in \mathbb{Z}^n_{+}\colon \quad \frac{|F^{(J)}(z)|_p}{J!\mathbf{L}^J(z)}\leq \max \left \{\frac{|F^{(K)}(z)|_p}{K!\mathbf{L}^K(z)} \colon K\in \mathbb{Z}^n_{+}, \|K\|\leq n_{0} \right \}.$ We assume the function $\mathbf{L}\colon \mathbb{C}^n\to\mathbb{R}^p_+$ such that $0< \lambda _{1,j}(R)\leq\lambda _{2,j}(R)<\infty$ for any $j\in \{1,2,\ldots, p\}$ and $\forall R\in \mathbb{R}_{+}^{p},$ where $\lambda _{1,j}(R)=\inf\limits_{z_{0}\in \mathbb{C}^{p}} \inf \left \{{l_{j}(z)}/{l_{j}(z_{0})}\colon z\in \mathbb{D}^{n}[z_{0},R/\mathbf{L}(z_{0})]\right \},$ $\lambda _{2,j}(R)$ is defined analogously with replacement $\inf$ by $\sup$. It is proved the following theorem: Let $|A|_p=\max\{|a_j|\colon 1\leq j\leq p\}$ for $A=(a_1,\ldots,a_p)\in\mathbb{C}^p$. An entire vector-valued function $F$ has bounded $\mathbf{L}$-index in joint variables if and only if for every $R\in \mathbb{R}^{n}_+$ there exist $n_{0}\in \mathbb{Z}_{+}$, $p_0>0$ such that for all $z_{0}\in \mathbb{C}^{n}$ there exists $K_{0}\in \mathbb{Z}_{+}^{n}$, $\|K_0\|\leq n_{0}$, satisfying inequality $\displaystyle \!\max\!\left \{\frac{|F^{(K)}(z)|_p}{K!\mathbf{L}^{K}(z)} \colon \|K\|\leq n_{0},z\in \mathbb{D}^{n}[z_{0},R/\mathbf{L}(z_{0})]\right \}%\leq \nonumber\\ \label{eq:5} \leq p_{0}\frac{|F^{(K_0)}(z_0)|_p}{K_0!\mathbf{L}^{K_0}(z_0)}, $ where $\mathbb{D}^{n}[z_{0},R]=\{z=(z_1,\ldots,z_n)\in \mathbb{C}^{n}\colon |z_1-z_{0,1}|<r_{1},\ldots, |z_n-z_{0,n}|<r_{n}\}$ is the polydisc with $z_0=(z_{0,1},\ldots,z_{0,n}),$\ $R=(r_{1},\ldots,r_{n})$. This theorem is an analog of Fricke's Theorem obtained for entire functions of bounded index of one complex variable.http://matstud.org.ua/ojs/index.php/matstud/article/view/131bounded index; bounded $\mathbf{l}$-index in joint variables; entire function; maximum modulus; $\sup$-norm; vector-valued function |
spellingShingle | A. I. Bandura V. P. Baksa Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theorem Математичні Студії bounded index; bounded $\mathbf{l}$-index in joint variables; entire function; maximum modulus; $\sup$-norm; vector-valued function |
title | Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theorem |
title_full | Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theorem |
title_fullStr | Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theorem |
title_full_unstemmed | Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theorem |
title_short | Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theorem |
title_sort | entire multivariate vector valued functions of bounded mathbf l index analog of fricke s theorem |
topic | bounded index; bounded $\mathbf{l}$-index in joint variables; entire function; maximum modulus; $\sup$-norm; vector-valued function |
url | http://matstud.org.ua/ojs/index.php/matstud/article/view/131 |
work_keys_str_mv | AT aibandura entiremultivariatevectorvaluedfunctionsofboundedmathbflindexanalogoffrickestheorem AT vpbaksa entiremultivariatevectorvaluedfunctionsofboundedmathbflindexanalogoffrickestheorem |