Entire multivariate vector-valued functions of bounded $\mathbf{L}$-index: analog of Fricke’s theorem

We consider a class of vector-valued entire functions $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$. For this class of functions there is introduced a concept of boundedness of $\mathbf{L}$-index in joint variables. Let $|\cdot|_p$ be a norm in $\mathbb{C}^p$. Let $\mathbf{L}(z)=(l_{1}(z),\...

Full description

Saved in:
Bibliographic Details
Main Authors: A. I. Bandura, V. P. Baksa
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2020-10-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/131
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a class of vector-valued entire functions $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$. For this class of functions there is introduced a concept of boundedness of $\mathbf{L}$-index in joint variables. Let $|\cdot|_p$ be a norm in $\mathbb{C}^p$. Let $\mathbf{L}(z)=(l_{1}(z),\ldots,l_{n}(z))$, where $l_{j}(z)\colon \mathbb{C}^{n}\to \mathbb{R}_+$ is a positive continuous function. An entire vector-valued function $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$ is said to be of bounded $\mathbf{L}$-index (in joint variables), if there exists $n_{0}\in \mathbb{Z}_{+}$ such that $\displaystyle \forall z\in G \ \ \forall J \in \mathbb{Z}^n_{+}\colon \quad \frac{|F^{(J)}(z)|_p}{J!\mathbf{L}^J(z)}\leq \max \left \{\frac{|F^{(K)}(z)|_p}{K!\mathbf{L}^K(z)} \colon K\in \mathbb{Z}^n_{+}, \|K\|\leq n_{0} \right \}.$ We assume the function $\mathbf{L}\colon \mathbb{C}^n\to\mathbb{R}^p_+$ such that $0< \lambda _{1,j}(R)\leq\lambda _{2,j}(R)<\infty$ for any $j\in \{1,2,\ldots, p\}$ and $\forall R\in \mathbb{R}_{+}^{p},$ where $\lambda _{1,j}(R)=\inf\limits_{z_{0}\in \mathbb{C}^{p}} \inf \left \{{l_{j}(z)}/{l_{j}(z_{0})}\colon z\in \mathbb{D}^{n}[z_{0},R/\mathbf{L}(z_{0})]\right \},$ $\lambda _{2,j}(R)$ is defined analogously with replacement $\inf$ by $\sup$. It is proved the following theorem: Let $|A|_p=\max\{|a_j|\colon 1\leq j\leq p\}$ for $A=(a_1,\ldots,a_p)\in\mathbb{C}^p$. An entire vector-valued function $F$ has bounded $\mathbf{L}$-index in joint variables if and only if for every $R\in \mathbb{R}^{n}_+$ there exist $n_{0}\in \mathbb{Z}_{+}$, $p_0>0$ such that for all $z_{0}\in \mathbb{C}^{n}$ there exists $K_{0}\in \mathbb{Z}_{+}^{n}$, $\|K_0\|\leq n_{0}$, satisfying inequality $\displaystyle \!\max\!\left \{\frac{|F^{(K)}(z)|_p}{K!\mathbf{L}^{K}(z)} \colon \|K\|\leq n_{0},z\in \mathbb{D}^{n}[z_{0},R/\mathbf{L}(z_{0})]\right \}%\leq \nonumber\\ \label{eq:5} \leq p_{0}\frac{|F^{(K_0)}(z_0)|_p}{K_0!\mathbf{L}^{K_0}(z_0)}, $ where $\mathbb{D}^{n}[z_{0},R]=\{z=(z_1,\ldots,z_n)\in \mathbb{C}^{n}\colon |z_1-z_{0,1}|<r_{1},\ldots, |z_n-z_{0,n}|<r_{n}\}$ is the polydisc with $z_0=(z_{0,1},\ldots,z_{0,n}),$\ $R=(r_{1},\ldots,r_{n})$. This theorem is an analog of Fricke's Theorem obtained for entire functions of bounded index of one complex variable.
ISSN:1027-4634
2411-0620