Time-Dependent Fragility Functions and Post-Earthquake Residual Seismic Performance for Existing Steel Frame Columns in Offshore Atmospheric Environment

This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel fram...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaohui Zhang, Xuran Zhao, Shansuo Zheng, Qian Yang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/13/2330
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A finite element analysis (FEA) method for steel frame columns, which considers corrosion damage and ductile metal damage criteria, is developed and validated. A parametric analysis in terms of service age and design parameters is conducted. Considering the impact of environmental erosion and aging, a classification criterion for damage states for existing steel frame columns is proposed, and the theoretical characterization of each damage state is provided based on the moment-rotation skeleton curves. Based on the test and numerical analysis results, probability distributions of the fragility function parameters (median and logarithmic standard deviation) are constructed. The evolution laws of the fragility parameters with increasing service age under each damage state are determined, and a time-dependent fragility model for existing steel frame columns in offshore atmospheric environments is presented through regression analysis. At a drift ratio of 4%, the probability of complete damage to columns with 40, 50, 60, and 70-year service ages increased by 18.1%, 45.3%, 79.2%, and 124.5%, respectively, compared with columns within a 30-year service age. Based on the developed FEA models and the damage class of existing columns, the influence of characteristic variables (service age, design parameters, and damage level) on the residual seismic capacity of earthquake-damaged columns, namely the seismic resistance that can be maintained even after suffering earthquake damage, is revealed. Using the particle swarm optimization back-propagation neural network (PSO-BPNN) model, nonlinear mapping relationships between the characteristic variables and residual seismic capacity are constructed, thereby proposing a residual seismic performance evaluation model for existing multi-aged steel frame columns in an offshore atmospheric environment. Combined with the damage probability matrix of the time-dependent fragility, the expected values of the residual seismic capacity of existing multi-aged steel frame columns at a given drift ratio are obtained directly in a probabilistic sense. The results of this study lay the foundation for resistance to sequential earthquakes and post-earthquake functional recovery and reconstruction, and provide theoretical support for the full life-cycle seismic resilience assessment of existing steel structures in earthquake-prone areas.
ISSN:2075-5309