Harmonic Aggregation Entropy: A Highly Discriminative Harmonic Feature Estimator for Time Series
Harmonics are a common phenomenon widely present in power systems. The presence of harmonics not only increases the energy consumption of equipment but also poses hidden risks to the safety and stealth performance of large ships. Thus, there is an urgent need for a detection method for the harmonic...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/27/7/738 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Harmonics are a common phenomenon widely present in power systems. The presence of harmonics not only increases the energy consumption of equipment but also poses hidden risks to the safety and stealth performance of large ships. Thus, there is an urgent need for a detection method for the harmonic characteristics of time series. We propose a novel harmonic feature estimation method, termed Harmonic Aggregation Entropy (HaAgEn), which effectively discriminates against background noise. The method is based on bispectrum analysis; utilizing the distribution characteristics of harmonic signals in the bispectrum matrix, a new Diagonal Bi-directional Integral Bispectrum (DBIB) method is employed to effectively extract harmonic features within the bispectrum matrix. This approach addresses the issues associated with traditional time–frequency analysis methods, such as the large computational burden and lack of specificity in feature extraction. The integration results, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>I</mi><mi>x</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>I</mi><mi>y</mi></msub></semantics></math></inline-formula>, of DBIB on different frequency axes are calculated using cross-entropy to derive HaAgEn. It is verified that HaAgEn is significantly more sensitive to harmonic components in the signal compared to other types of entropy, thereby better addressing harmonic detection issues and reducing feature redundancy. The detection accuracy of harmonic components in the shaft-rate electromagnetic field signal, as evidenced by sea trial data, reaches 96.8%, which is significantly higher than that of other detection methods. This provides a novel technical approach for addressing the issue of harmonic detection in industrial applications. |
---|---|
ISSN: | 1099-4300 |