Electric Vehicle Sales Forecast for the UK: Integrating Machine Learning, Time Series Models, and Global Trends

This study presents a comprehensive forecasting approach to evaluate the future of electric vehicle (EV) adoption in the United Kingdom through 2035. Using three complementary models—SARIMAX, Prophet with regressors, and XGBoost—the analysis balances statistical robustness, policy sensitivity, and i...

Full description

Saved in:
Bibliographic Details
Main Authors: Shima Veysi, Mohammad Moshfeghi, Amir Sadrfaridpour, Peiman Emamy
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/7/430
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a comprehensive forecasting approach to evaluate the future of electric vehicle (EV) adoption in the United Kingdom through 2035. Using three complementary models—SARIMAX, Prophet with regressors, and XGBoost—the analysis balances statistical robustness, policy sensitivity, and interpretability. Historical data from 2015 to 2024 was used to train the models, incorporating key drivers such as battery prices, GDP growth, public charging infrastructure, and government policy targets. XGBoost demonstrated the highest historical accuracy, making it a strong explanatory tool, particularly for assessing variable importance. However, due to its limitations in extrapolation, it was not used for long-term forecasting. Instead, Prophet and SARIMAX were employed to project EV sales under baseline, optimistic, and pessimistic policy scenarios. The results suggest that the UK could achieve between 2,964,000 and 3,188,000 EV sales by 2035 under baseline assumptions. Scenario analysis revealed high sensitivity to infrastructure growth and policy enforcement, with potential shortfalls of up to 500,000 vehicles in pessimistic scenarios. These findings highlight the importance of sustained government commitment and investment in EV infrastructure and supply chains. By combining machine learning diagnostics with transparent forecasting models, the study offers actionable insights for policymakers, investors, and stakeholders navigating the UK’s zero-emission transition.
ISSN:1999-4893