Performance Characterization and Antibacterial Activity of a Composite Hydrogel Composed of Oxidized κ-Carrageenan, Acrylamide, and Silver-Based Metal–Organic Frameworks
To advance seaweed polysaccharide applications in hydrogel wound dressings, five antibacterial composite hydrogels (groups A~E) were synthesized using oxidized κ-carrageenan (OKC), acrylamide (AM), and progressively increasing concentrations of silver-based metal–organic frameworks (Ag-MOFs). System...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Sprog: | engelsk |
| Udgivet: |
MDPI AG
2025-05-01
|
| Serier: | Gels |
| Fag: | |
| Online adgang: | https://www.mdpi.com/2310-2861/11/6/407 |
| Tags: |
Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
|
| Summary: | To advance seaweed polysaccharide applications in hydrogel wound dressings, five antibacterial composite hydrogels (groups A~E) were synthesized using oxidized κ-carrageenan (OKC), acrylamide (AM), and progressively increasing concentrations of silver-based metal–organic frameworks (Ag-MOFs). Systematic characterization revealed concentration-dependent effects: (1) positive correlations were obtained for the moisture content (MC, maximized at 82.70% in E) and antibacterial efficacy (dose-dependent enhancement); (2) negative impacts were obtained for the swelling ratio (SR, E: 479% vs. A: 808%); and (3) high-dose drawbacks but low-dose benefits in terms of water resistance (WR), tensile strength (TS), elongation at break (EB), and microstructure were obtained. Group B demonstrated optimal Ag-MOFs loading, enhancing TS and EB, while excessive Ag-MOFs loading in C~E significantly degraded them (<i>p</i> < 0.05). Microstructural analysis showed severe 3D spatial damage in D~E. Furthermore, cytocompatibility assessments revealed that all groups maintained a cell viability exceeding 90%, demonstrating excellent biocompatibility. Among them, A~C showed a viability statistically equivalent to the control (<i>p</i> > 0.05) and were significantly higher than D~E (<i>p</i> < 0.05). In conclusion, group B emerged as the optimal Ag-MOFs formulation and exhibited superior WR, enhanced mechanical strength (TS and EB), and potent antibacterial activity while maintaining microstructural integrity and excellent biosafety. This Ag-MOFs/OKC/PAM hydrogel provides dual infection prevention and tissue support, maximizing seaweed polysaccharide benefits with excellent biocompatibility. |
|---|---|
| ISSN: | 2310-2861 |