Wheat 14-3-3 Protein Conferring Growth Retardation in Arabidopsis
14-3-3 proteins belong to a family of phosphoserine/threonine-binding modules and participate in a wide array of signal transduction and regulatory events. Our previous study demonstrated that Ta14-3-3 was significantly down-regulated in leaf and root tissues of hybrid wheat at the tillering stage....
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co., Ltd.
2013-02-01
|
Series: | Journal of Integrative Agriculture |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2095311913602208 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 14-3-3 proteins belong to a family of phosphoserine/threonine-binding modules and participate in a wide array of signal transduction and regulatory events. Our previous study demonstrated that Ta14-3-3 was significantly down-regulated in leaf and root tissues of hybrid wheat at the tillering stage. In this paper, three homoeologous Ta14-3-3 genes were cloned from common wheat (Triticum aestivum L., 2n=6x=42, AABBDD) and mapped on chromosomes 2A, 2B, and 2D, respectively. Transgenic Arabidopsis plants ectopically overexpressing Ta14-3-3 displayed shorter primary roots, delayed flowering and retarded growth rates, indicating that Ta14-3-3 acted as a growth inhibitor in Arabidopsis. In wheat, Ta14-3-3 was down-regulated in roots and leaves of hybrids as compared to their parental lines. We proposed that Ta14-3-3 proteins might regulate growth vigor in hybrid wheat. |
---|---|
ISSN: | 2095-3119 |